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Parallel, Multistage Model for Enterprise
System Planning and Design

Harrison M. Kim, Shen Lu, Jin Suk Kim, and Byoung-Do Kim

Abstract—This paper describes a parallel, multistage optimiza-
tion approach for enterprise system design and planning where the
design of a system is linked with its planing and operations (re-
source allocation). Our approach is composed of two parts: a mul-
tistage formulation and a task-parallel algorithm. The formulation
utilizes the quasi-separability of the multistage decision making
structure, i.e., allowing relaxation by defining the linking variables
for adjacent stages of decision making. The task-parallel algorithm
enables optimal load balancing of the tasks, and it is validated in
the demonstration case where an airline plans to introduce mul-
tiple new aircraft to capture dynamically changing travel demand.
A linearly increasing computational load is assumed as the number
of stages increases due to the complexity added onto the upcoming
future stages in the optimization processes. The proposed task par-
allel algorithm demonstrates significant speedups and parallel per-
formances by utilizing this linearity.

Index Terms—Design, optimization, parallel enterprise system,
planning.

I. INTRODUCTION

E NTERPRISE systems include a variety of elements
such as design, manufacturing, planning, consumer use,

operations, take-back, recovery, etc. Traditionally, system
design decisions have been separate from system operations
or usage decisions; however, conventional artifact-oriented
system design is gradually transformed into service-oriented
system design under the enterprise system notion. In this paper,
the term “enterprise system” is defined as a holistic system
that encompasses multiple, distinct system domains. Thus,
enterprise system characteristics are influenced by engineering
design, marketing, planning, sales, etc. as they relate to a firm’s
business decisions such as maximize profit, minimize cost, and
meet the performance goals.

It is not critical to plan for next generations of new prod-
ucts in the case of artifact-oriented product design with no ser-
vice component. However, the enterprise must be able to plan
ahead to maximize its profit regarding next generations of prod-
ucts and services with an increased importance of the service
component of products. Critical decisions in planning include
product take-back timing, component reuse/recycle/remanufac-
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ture, product portfolio management, service portfolio manage-
ment, etc. In the case of green product portfolio design, for ex-
ample, a subset of components from previous generation prod-
ucts may be used again to reduce cost and minimize a negative
environmental impact. The enterprise often needs to consider
multiple generations of product portfolios with service compo-
nents taken into account simultaneously. The design and plan-
ning model becomes very complex as a result.

This simultaneous decision making often involves discrete/
integer decision variables in the problem. Thus, the multigener-
ation (or, multistage) system planning and design problem be-
comes intractable from the mathematical point of view resulting
in a mixed integer nonlinear programming problem (MINLP).
Previous works show this MINLP nature in many different ap-
plication areas. Crossley and Mane [1] integrated resource allo-
cation and system design under the notion of system of systems
and solved them utilizing discrete optimization methods. Kim
and Hidalgo [2], [3] extended this idea to a dynamic environ-
ment in which multistage aircraft design and operation is for-
mulated and solved as a multilevel, multidisciplinary problem
utilizing methods such as analytical target cascading [4].

The increasingly complex engineering application has been
one of the major challenges faced by the design, as well as com-
puting communities. With the emerging notion of enterprise in
engineering design and system management, one effective way
to meet this challenge is to utilize the theory and tools from con-
current engineering and parallel computing. Concurrent engi-
neering and parallel computing has been implemented in engi-
neering design and its optimization in various aspects. The no-
tion of concurrent engineering (CE) approaches has been tradi-
tionally applied to address the process downstream aspect of si-
multaneous (multidisciplinary) design decision making [5]–[8];
and, for the optimization aspect, major efforts have been fo-
cused on the concept of parallel optimization (PO) at different
levels [9].

Most of the CE applications fall into two categories. The
first category emphasizes incorporating a number of different
life-cycle perspectives relevant to a product at the product de-
sign stage, e.g., manufacturing, assembly, reuse/recycling [10].
Another category focuses on the computer-aided collaborative
engineering design, and many computational models have been
proposed to facilitate this application [11], [12].

As for the optimization aspect, major efforts have been or-
ganized under the concept of PO and parallel processing (PP).
The multidisciplinary PO applications in a system-subsystem
structure can be categorized into three levels: 1) subsystem anal-
ysis; 2) subsystem optimization; and 3) system optimization and
coordination.
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At the subsystem analysis analysis level, PP techniques, such
as parallel algorithms for systems of algebraic equations, do-
main decomposition techniques, and so on, are applied to disci-
plinary analysis process to achieve computational speedup [13].
The subsystem level PO includes parallel implementation of
various optimization algorithms, including mathematical pro-
gramming algorithms [14], [15] as well as global optimization
algorithms [16]–[18]. PO of single disciplinary problems also
falls into this category.

At the system optimization and coordination level, efforts
have been made to address coordination among the subsys-
tems. Many multidisciplinary design optimization (MDO)
approaches, such as Bi-Level Integrated System Synthesis
[19], Concurrent Subspace Optimization [20], Collaborative
Optimization [21], and Analytical Target Cascading [22], are
implemented such that subsystem optimization processes are
executed in parallel. Some of these approaches have been
proven to generate solution sequences convergent to a local
minimizer of the problem [23]. Furthermore, MDO environ-
ments have been proposed to assist multidisciplinary design
decision making [24], [25].

It is well known generally that the allocation of arbitrary tasks
onto a system of processors is an NP-complete problem. An
approximation or heuristic algorithm is sometimes pursued as
a practical alternative due to this complexity. The heuristic al-
gorithms for task allocation are classified into two categories:
static and dynamic. In static algorithms, the task allocation is de-
termined off-line before the tasks are executed [26], [27], while
dynamic algorithms determines the task allocation at runtime
(online) [28]. There is no guarantee on the performance of a
heuristic algorithm on a general problem in principle. There-
fore, some understanding of a problem’s characteristics may be
desirable while developing heuristics for the problem. In this
paper, we focus on static task allocation in the scenario where a
set of tasks is not interdependent, and their processing time is a
linear function of their index in the task set.

This paper presents two main contributions motivated by:
1) engineering system design under the enterprise notion and
2) parallel computing capability to overcome complexity.
First, a multistage formulation is presented by integrating
multilevel and multistage optimization utilizing the quasi-
separability; then an efficient parallel coordination algorithm
is presented to utilize the quasi-separable structure fully. The
multistage decision making for design and operations of a
system under the enterprise notion is modeled specifically in
a manner that is suitable for a parallel computing paradigm.
For the scenario where the processing time of single stage
decision problem is a linear function of its stage index, the
proposed parallel coordination algorithm ensures the optimal
task parallelism for the maximum utilization of computing
resources while allowing decision making autonomy in the
enterprise.

The rest of the paper is organized as follows. Section II de-
scribes the pseudohierarchical multistage formulation, followed
by multistage coordination based on the parallel task-decompo-
sition algorithm. An illustrative example where an airline orders

multiple, customized future aircraft demonstrates and validates
the proposed approach.

II. PARALLEL ENTERPRISE SYSTEM PLANNING AND DESIGN

A. Problem Statement

The problem addressed in this paper concerns two aspects of
enterprise system planning and design: 1) how to model a multi-
generation system (or product) design when the service/oper-
ation component must be considered in system design phase
and 2) how to utilize parallel computing capability in an op-
timal manner when the number of processors is smaller than
the number of tasks (i.e., limited computing resources). Specif-
ically, the problem description can handle the collaborative de-
sign and planning problems such as manufacturing machine de-
sign and planning; supercomputing system acquisition decision
making for optimal allocation, etc. The all-in-one (AIO) ap-
proach (i.e., solving in one large problem) is not a practical op-
tion due to its multistage nature. Thus the decomposition-based
approach must be introduced to model the decision making. Fur-
ther, as the number of stages is increased, finding an optimal
set of solutions becomes a challenge under limited computing
resources. To overcome this challenge, a new coordination al-
gorithm is needed for an efficient use of multiple, autonomous
computing resources (or processors). The AIO formulation and
the decomposed, individual stage formulation linked between
stages are presented in the next two subsections, respectively, to
show the equivalence between the two.

B. The Original All-in-One Formulation

The original AIO multistage problem is stated as follows.
Given system targets (i.e., performance goals) for
all stages 1 through , the enterprise system generates responses
(i.e., output) subject to design and operational con-
straints (only inequality constraints are considered here for
simplicity)

(1)

To evaluate each response and constraint function, local de-
sign variables that belong to a single stage , denoted as , and
linking design variables shared by the current stage and its ad-
jacent stages and , denoted as ,
are taken as inputs. Note that the linking variables are only de-
fined for adjacent stages shown in subscripts ( , ) and ( ,

). At the optimum, while the objective is minimized, the
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Fig. 1. Parallel multistage optimization model. (a) Sequential approach. (b) Parallel approach.

linking variables must converge to the same values, for example,
at the stages , .

This adjacent sequencing of linking variables implies that
design decision making at the current stage is directly influ-
enced by the decision making at the immediate previous stage,
and it will affect the immediate following stage. For some mul-
tistage design problems, this sequencing is straightforward; for
example, structural design precedes fatigue design in structural
optimization. For other problems, however, the sequencing
is not straightforward; for example, unmanned aerial vehicle
(UAV) design for surveillance mission vs. attack mission in
one operating system. The key assumption in this paper is that
the system operations are represented as stages defined in a
sequential manner as shown in Fig. 1.

C. Individual Stage Formulation

The multistage framework integrates the individual stage
multidisciplinary design optimization in the horizontal (i.e.,
stages) direction. Traditional multilevel formulation decom-
poses a single overall problem into multiple subproblems at
multiple levels, and traditional multistage problems formulate
the sequential decision making as a series of smaller size
subproblems along the time (or stage) horizon. By combining
these two paradigms, first, at each stage, an integrated design
and operations optimization problem (usually a mixed integer
nonlinear programming (MINLP) problem) is formulated and
solved. Then, these separate MINLP problem solutions com-
municate with each other to reach a consensus (i.e., matching
values) for the links between different stages (Fig. 1).

Before proceeding with individual stage formulation, it is as-
sumed that the objective function in the all-in-one problem (1)
is separable without loss of generality due to the multistage no-
tion of the current framework

(2)

where the squared L-2 norm is used to calculate the devia-
tion between the responses and targets. Note that some MINLP
solvers rely on the continuous differentiability of the problem’s
continuous relaxation. Therefore the use of the squared L-2
norm may be critical, depending on the MINLP solver.

Based on the separability of the objective, at stage , the indi-
vidual system design problem is written as follows:

(3)

As described in the problem statement, for example, new sys-
tems are added at each stage to the existing systems (adding to
the existing fleet), thus increasing the scale of the individual op-
timization problems described in (3). This trend is addressed in
Section III.

III. TASK-PARALLEL ALGORITHMS FOR ENTERPRISE

SYSTEM COORDINATION

In this section, we describe the details of the coordination al-
gorithm for task parallelism for the proposed multistage plan-
ning/design problem. First, the linearity assumption is intro-
duced.

A. The Linearity Assumption

In the multistage optimization process, each stage is linked
with adjacent stages, and the computational load becomes larger
as the index of the stage increases due to increased complexity
of the process. The most distinguishing characteristics of the
current research are: 1) linearly increasing computational load
for each stage [Fig. 1(a)] and 2) data communication for the de-
sign variables between stages involves only the beginning and
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the end of individual system design and planning. Task paral-
lelism can be applied to this type of application by consid-
ering the stages as individual task process. In principle, it is
well known that finding the best possible allocation of arbitrary
tasks onto a system of processors is a NP-complete problem.
Numerous research works have been done with heuristic ap-
proaches in order to solve this type of problem. For example,
[26] compares several scheduling heuristics for a class of tasks
with no interdependencies. Additionally, [27] proposes an on-
line heuristic scheduling algorithm for grid computing. In this
paper, a parallel load-balancing algorithm is proposed for the
parallel execution of the airline application based on its compu-
tational characteristics, i.e., linearity in the processing time of
the multistage optimization process. The objective of the par-
allel algorithm is to assign task nodes to processors so as to min-
imize overall execution time of the application.

B. Coordination Algorithm Description

Suppose we are given a set of independent tasks and are
required to assign the tasks on to processors. For the multi-
stage airline application, let be the number of stages of the
optimization process (i.e., planning time horizon). Dividing
by results in number , which ideally represents the number
of tasks assigned onto each processor if the computational load
for each stage is identical. The reality with most scientific appli-
cations is not the case, however, as our model also has a varying
computational load for each stage as discussed in previous sec-
tion. The monotonic increase of the processing time (linearity
as described in the previous subsection) with the multistage can
be expressed as

(4)

where denotes the processing time of task at stage with
a set of tasks. This time does not include the possible commu-
nication time for input data transfer and data transfer between
the stages, which is assumed to be negligible compared to indi-
vidual stage MINLP problem solving.

With number of tasks (optimization process stages), the
total processing time is partitioned into number of cells,
which has number of processing tasks. Fig. 2 shows the
notation of the partitioning cells and their elements. The
indicates cell among the number of cells, and indicates

processing time in the cell. Fig. 2 part a) shows the case
where the , the number of cells, is even numbers and Fig. 2
part b) shows the case where is odd numbers. In case of the
odd , we utilize the notation of , and in order to
represent median cell, left hand side cell and right-hand side
cell, respectively.

Another assumption for this application with the linearity of
the processing time is that the number of task is dividable by
number of processors without remainder, i.e.,

. The case where the integer is not dividable by can be con-
verted into the case by zero-load task padding.
The latter case will be discussed later in this section.

The pseudocode given below presents the load-balancing al-
gorithm with three different cases of task-processor mapping.
The first case is where is an even number (with either an even
or odd number of ), and the second is the case where is the

Fig. 2. Notation of the subcells and it elements. (a) Even number of�. (b) Odd
number of �. (a) � � ��, � � �, � � �. (b) � � ��, � � �,� � �.

Fig. 3. Case I: Even number of � case with an example of � � �, � � �.

odd number with an even number of . An odd number of
with an even number of is the third case. These three cases
cover all the possible cases of .

Algorithm Load-Balancing (T)

BEGIN

IF is an even number (Case I)

for to begin ; end

ELSEIF ( is an odd number) AND ( is an odd number)
(Case II)

; ;

for to begin ; end

ELSE(Case III)

; ;

for to begin ; end

ENDIF

; for

for to

for to

END

For Case I, we combine the tasks into pairs with equal
computational load. Since is an even number, is divid-
able by . Therefore, an even load balancing can be expected by
assigning of these pairs to each processor. Technically,
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Fig. 4. Case II: ������� ������� 	
� function operation mechanism for odd
number of �, odd number of �: � � 

�� 
����, � � 

�� 
����.

Fig. 5. split() function operation for the median cell (o represents odd number;
e represents even number).

this can be implemented by a simple reverse function. The re-
verse() is a function that reverses the order of elements in a given
cell. Fig. 3 shows the reverse mapping operation for the even
number of case with an example of , . The final
subtask group gets a group of task elements for the optimal
load balancing by taking element of the cell.

The other two cases with odd ’s are a bit more complicated
than the first case. We combine the tasks in the three middle
cells so that their computational load can be optimally allocated
to the processors; then the remaining cells are allo-
cated in a manner similar to the Case I. Case II is where an
odd number of elements is in odd number of cells . The
mirror image mapping can be performed until the three cells
in the middle, , and , remain. The reverse mapping
does not work for these three cells due to the asymmetry with the
number of task elements. Here, we introduce two new functions;

and that are applied to the right hand
side cell, , and the median cell, , respectively. The oper-
ation of the function is shown in Fig. 4. As
illustrated in the figure, the task elements in the are parti-
tioned into two groups at the ratio of ,
then the order of the task elements in each subcell is reversed
by the operation.

Fig. 5 shows the split() function operation. In this operation,
the task elements are being split into the same groups as in the

, then the tasks at even number of indexes
move to the first group, while the odd number indexed task ele-
ments move to the second group. Applying these operations to
the right hand side and median cells, followed by the reverse()
operation, results in an optimal load of for
the final subtask group .

Case III, with odd number of and even number of ,
goes though a similar operation as Case II. When it comes
down to the operation for the three middle cells ,
and , it requires one more step. and

functions are introduced in the pseudocode
and are illustrated in Figs. 6 and 7 respectively. As shown in
the Fig. 6, the does the same operation
as the does, but it partitions the task ele-
ments into three groups rather than two. The grouping ratio is

and the first task element in the cell

Fig. 6. Case III: ������� ������� �
� function operation for odd number of
�, even number of �: � � 
����,� � 
���� � 
.

Fig. 7. Case III: Rotation_split function operation for odd number of �, even
number of �: � � 
����, � � 
���� � 
.

keeps the original position through the operation. By keeping
the first index location, the rest becomes the same operation as
the used in the case II.

The rotation_split() shown in Fig. 7 moves the th task
element to the first index location and moves the rest of tasks up
one higher index position (rotation). After this additional step,
the rest of the split operation is the same as the split() function
in the case II but with partitioning.

These special mapping operations in Case II and III result in
a new set of task cells. From this point, the simple mirror image
reverse mapping operation produces final subtask groups with
optimal load balance.

Theorem 1: Assume that
represents the processing time of

a set of tasks and that the number of processors is a di-
visor of . The load-balancing algorithm maps the set of
tasks with linearly increasing processing times on a processor
system with minimum makespan, where the makespan denotes
the maximum total processing time on any processor.

Proof: The linearity of processing times
can be simplified without loss of generality as follows: ,
i.e., . The lower bound for the makespan is

because . The cases de-
scribed in this proof are the same cases in the algorithm in
Section III-B.

Case I: The sum of the processing times in is

(5)

which is equal to the lower bound for the makespan.
Case II: The sum of the processing times in is
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Fig. 8. Example problem of case II: � � �, � � �, � � ��. (a) Split and
�����		 
���
�� �
� operation for� and� . (b) Task mapping steps of the
load balancing process.

(6)

where .
Case III: The lower bound for the makespan is

because is an odd number.
The sum of the processing times in is as follows:

(7)

where . Therefore, the
load balancing algorithm always finds minimum makespan
for tasks-processors mapping.

We note that the stated optimality holds when the linearity
assumption of task processing time is satisfied. If the task pro-
cessing time is not linear with respect to the stage number, the
allocation generated by the Load-Balancing(T) algorithm may
not be optimal.

Two examples for the Case II and the Case III are presented
in this section. For Case I, an example problem was shown in
Fig. 3 with the algorithm description in the previous section.
Fig. 8 demonstrates an example of Case II where , .
The optimal load balance for each processor in this problem has
value of 65. As shown in the figure, the right hand side cell
and the median cell go through the and
split() operations respectively as shown in part (a). After the
special operations for the middle cells, the reverse() operation is
applied resulting number of subtask groups as shown in part

Fig. 9. Example problem of case III:� � �, � � �,� � ��. (a) Rotate_split()
and �����		 
���
�� � operations for � and � . (b) Task mapping steps of
the load balancing process.

(b). The computational load of each subtask group, which is sum
of the task elements in the group, has the optimal value of 65.

An example problem of Case III where , is
shown in Fig. 9. The optimal load balance for each processor
in this problem has a value of 77.5. The
and operation are applied for the and ,
respectively, as shown in Fig. 9(a). The final subtask groups
have number of task elements where the sum of the tasks is
either 77 or 78, which satisfies the lower bound of the optimal
value 78, as shown in Fig. 9(b).

So far, we have investigated cases where for
the load balancing algorithm. The cases of can
be converted into the problem by adding a min-
imum number of zero-load tasks in front of the original tasks.
Here the minimum number means the smallest number of ad-
ditional tasks that makes the to be one of the

cases. Once the zero-load tasks padding is done,
the problem falls into one of three categories that can be dealt
with by the load-balancing algorithm without violating the as-
sumption of the linear increase of the computational load.

IV. DEMONSTRATION CASE

An airline fleet management and planning case is considered
in order to demonstrate the multistage formulation and parallel
coordination algorithm. Eight new aircraft are to be added to the
existing fleet, one after another in each of the eight upcoming
stages (e.g., every year), to accommodate dynamically changing
travel demand. Complexity of the problem is increased signif-
icantly due to the multistage aspect of planning, although the
route configuration in Fig. 10 seems simple.

The airline intends to plan ahead as to what type of aircraft
should be introduced in the future stages before ordering (or
customizing) them. The airline’s objective is to minimize its
direct operating costs (DOC) throughout the eight future stages
[29]. Initially (the zero stage), the airline has two aircraft types,
A and B, in its existing fleet (3 type A and 2 type B) and operates
covering three routes as shown in Fig. 10. Table I shows the
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Fig. 10. Route configuration ���� � �����	�
 ��
��
.

TABLE I
EXISTING AIRCRAFT A AND B KEY PARAMETERS

parameters of the existing aircraft A and B. For simplicity, we
assumed that the only design variable to be introduced for the
aircraft is the maximum number of passengers (i.e., capacity).

A. All-in-One Problem

The all-in-one (AIO) problem aggregates aircraft allocation
and design (i.e., selection) of the eight stages together. For each
new aircraft type introduced to the fleet in each stage , max-
imum number of passengers is defined such that it can only
take the values of {160, 180, 200}, i.e., three choices of aircraft
capacity (small, medium, large) at each stage. The objective of
the AIO problem, DOC, is the summation of the daily DOC of
all three routes of all existing aircraft and newly introduced air-
craft throughout all eight stages. The new aircraft cost calcula-
tion is from [29].

A total of eight stages is considered in this case. In stage ,
the maximum number of passengers (travel capacity) that can
be transported for routes 1, 2, 3, by the existing fleet A and B,
and the new additional aircraft are given in (8)–(10). These
travel handling capacities must satisfy the travel demand (given
as fixed values for individual routes at each stage) that is allowed
to change throughout the eight stages to reflect dynamic market
demand. The number of routes here is (Fig. 10)

(8)

(9)

(10)

Here, the superscript indicates the stage, e.g., indicates the
allocation variable for aircraft B on route 3 at stage 2. We la-

beled new aircraft as the first subscript index, thus at stage ,
the newly introduced aircraft have indexes from 1 to . These
indexes will be used in the decomposed subproblems to denote
individual stages. As seen from the AIO problem, the optimiza-
tion problem becomes very large scale due to the combinatorial
nature of the aircraft selection. Under the extreme exhaustive
search, only for aircraft size variables , the total number of
possible combinations is , which confirms the need
for the decomposed multistage approach presented in the next
subsection

(11)

B. Multistage Decomposed Problem

The AIO problem is decomposed into stages, and each stage
is optimized separately following the parallel coordination
algorithm presented in the previous section. In the current
example, the airline starts in stage one with two existing aircraft
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types, A and B, and introduces new aircraft to the fleet. Up to
the eighth stage, the airline keeps adding one new aircraft to the
existing fleet. The decomposed problem for stage is stated as
follows:

V. NUMERICAL RESULTS AND DISCUSSION

The airline allocation model with an eight stage optimiza-
tion process has been used for the algorithm simulation purpose.
Since the number of stages (tasks) is limited to eight, three dif-
ferent load balance mappings ( , , ) have
been tested using the load balancing algorithm presented in the
previous section. In general, it is difficult to predict the exact
processing time of the task at each individual stage in this type
of application. The linear increase of the processing time shown
below in (12)–(13), although not exactly linear, provides a more
reasonable expectation of better parallel performance with the
load balance algorithm than random pair-up strategies for the
parallelization.

Two demonstration problems with different demand sce-
narios were solved by the application and tested with the newly
developed algorithm. The processing times at each stage of the
problems are presented as

(12)

(13)

TABLE II
RESULTS OF THE SPEEDUPS FOR THE TESTED CASES

The cases of and fall into the category that
utilizes the mirror image mapping (even , even ). For ,
since the condition is not satisfied, zero-load
task padding is required. Adding only one additional pseudotask
processing results in a case of and , which falls
into Case II of the algorithm.

The speedup, , of the each case has been analyzed for
the parallel performance test. The speedup is the ratio of pro-
cessing time for sequential execution to processing time for par-
allelized execution of the application using processors [30].
Table II summarizes the results of the two test cases under the
following speedup definition:

(14)

where the largest value of the processing time in the subtask
group was selected in the denominator.

As shown in Table II, the speedups of the two test problems
increase as the number of processors increases. Problem B
displays better speedups because the processing time of the
stages in the problem is closer to the strict linear case than in
problem A.

The size of the application limited the number of test cases in
this study, but the simulation with the two test cases shows that
the load balancing algorithm ensures a good task-paralleliza-
tion for the multi-stage optimization applications with linear in-
crease of processing time.

VI. CONCLUSION

The proposed quasi-separable multistage framework simulta-
neously enables finding an optimal enterprise design and plan-
ning. Also, the task-parallel algorithm allows an optimal load
balancing to solve the multistage programming problem in a
parallel, decomposed manner to overcome the challenge of in-
creased complexity of the solution process. The airline demon-
stration case showed that the proposed framework and solution
algorithm finds an optimal system selection (or design) and its
optimal allocation in conjunction with the existing fleet. For the
eight-stage problem, it was shown that the task-parallel algo-
rithm achieved a good speedup with an increasing number of
processors. The proposed methodology is significant in that it
allowed a joint decision making for future operating scenarios
for previously separate design and planning problems. Future
research involves acquisition and operation problems for the
new system of systems, and parallel optimization algorithm de-
velopment for an efficient solution process. Also, an interesting
follow-up would be to identify the correlation between system
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of systems capability to predict emerging behavior and opera-
tional conditions such as future passenger demand, which would
enable even longer term planning and design.
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