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Optimal Modular
Remanufactured Product
Configuration and Harvesting
Planning for End-of-Life Products
Remanufacturing is a representative product recovery strategy that can improve economic
profitability and sustainability, but many companies are struggling because of the lack of
understanding of the market and the design strategies for remanufactured products.
Unlike the production process of new products, remanufacturing requires unique produc-
tion processes, such as collecting used products and dis(re)assembly. Therefore, several
factors need to be considered for the design of remanufactured products. First, when
designing a remanufactured product, it is crucial to ensure that the specifications of com-
ponents meet the customer’s requirements because the remanufacturing uses relatively out-
dated components or modules. In addition, it is necessary to consider the disassembly level
and order to facilitate the disassembly process to obtain the desired parts. This study pro-
poses an integrated model to (i) find configuration design suitable for remanufactured prod-
ucts that can maximize customer utility based on customer online review analysis regarding
End-of-Life products, and (ii) establish a harvest plan that determines the optimal disassem-
bly operations and levels. This proposed model can be used as a decision-making tool that
helps product designers find the appropriate design of remanufactured products while
increasing the efficiency of the remanufacturing process. [DOI: 10.1115/1.4052389]
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1 Introduction
Improving global awareness of the environment and increasing

pressure from environmental laws and public policies have led man-
ufacturers to seriously consider the entire life cycle management of
their products and the treatment of electronic waste. Remanufactur-
ing has emerged as one of the effective alternatives to recover
end-of-life (EoL) products. It refers to the process of extracting
parts or modules from the collected EoL products, undergoing
reconditioning or upgrading, and producing a tested and certified
product that has almost the same performance and quality as a
new product. Remanufacturing enables manufacturers to recycle
EoL products to reduce production and material costs and environ-
mental impact that may occur in the manufacturing, as well as
expand their product line by producing relatively inexpensive prod-
ucts of the same quality [1–4].
Remanufacturing is meaningful in terms of enhancing a compa-

nies’ profitability and sustainability (building a green brand image),
but many companies are struggling due to a lack of understanding
of the remanufacturing market and design strategies for remanufac-
tured products [3,5]. Unlike a new product design, remanufactured
products are designed based on previously released components
that may be physical deterioration and (or) technological obsoles-
cence [6–9]. Therefore, the remanufactured product design needs
to consider the high recycling rate of each component as well as
the value (utility) of the parts perceived by customers.
It is also important to consider the effect of the remanufactured

product design on the remanufacturing process. Recently, as more
products are designed in a form that is difficult to disassemble
due to rapid technological development and intensifying global

competition [10,11], disassemblability has become a crucial factor
in remanufacturing. The order and level of the disassembly (har-
vesting) process performed to collect the target module for remanu-
factured products are important because it determines the efficiency
of the entire remanufacturing process. In other words, even for parts
with high customer utility, if the disassembly process is impossible
or difficult, the overall benefit of remanufacturing may be reduced.
To support the proper design configuration of remanufactured

products, an integrated methodology that considers customer satis-
faction analysis and harvesting process simultaneously, rather than
simply selecting a part with a high recycling rate, is required.
However, there are few studies on the design of remanufactured
products that simultaneously consider customer analysis and har-
vesting planning. To tackle this issue, this study proposes an inte-
grated methodology to identify the optimal remanufactured
product design to maximize customer utility through online
review analysis while minimizing the disassembly (harvesting)
time of EoL products. The optimization model deals with the
bi-objective functions, with one objective function to maximize
the customer’s utility and the other to minimize the disassembly
time required to extract parts from EoL products. The proposed
methodology can be used as a decision support tool to help
OEMs design remanufactured products under consideration of cus-
tomers’ utility and the efficiency of disassembly.
The rest of the paper is organized as follows: Sec. 2 reviews the

relevant prior work/literature on this topic. Section 3 depicts a math-
ematical model for the configuration design of remanufactured
products and harvesting planning. Section 4 illustrates the proposed
model through a case study on a smartphone-product family.
Finally, conclusions and future research are discussed in Sec. 5.

2 Literature Review
This section discusses the contributions and limitations of previ-

ous works related to the topics covered in this study:
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(i) remanufactured product design configuration, (ii) design implica-
tions from online data, and (iii) disassembly (harvesting) planning.

2.1 Product Configuration Design. Product modularity can
be easily separated from other modules (components) to provide
sub-assemblies and components to facilitate EoL recovery strate-
gies [12]. Utilizing modules, product designers need to consider
how to assemble the modules for a new or remanufactured
product. Product configuration design optimization is the determi-
nation of the optimal combination of components (and/or
modules) by selecting components from a predefined set based on
several constraints to meet a specific goal [13,14]. In product
design, determining product configuration is an important step.
This is because this decision determines all subsequent detailed
design and production process [15]. The configuration design of
remanufacturing is more challenging and complex than the con-
figuration design of new products. Therefore, research on remanu-
factured product configuration design is still in its early stages [16].
While most researchers focused on the manufacturing (design
configuration of new products), some researchers studied the con-
figuration design of remanufactured products considering economic
and environmental objectives.
Aydin et al. [17] proposed a new methodology to address the

consideration of new and remanufactured product design to maxi-
mize market share and profit. By applying the dynamic demand
model and the multi-purpose optimization model, the specifications
of new and remanufactured products and the timing of remanufac-
turing products were determined. In this study, there is a limitation
of not considering the various specifications or designs of EoL
products that can be used as materials for remanufacturing. Aydin
et al. [18] proposed a methodology to identify sustainable product
family design considering multiple life cycle approach and EoL
strategies. The findings show that considering a multi-life cycle
approach to designing a sustainable product line, the entire life
cycle cost, the entire life cycle energy usage, and the entire life
cycle water usage are significantly reduced. In this study, the
number of modules that can be extracted from several EoL products
was considered, but the time required in the disassembly process to
extract the modules was not considered.
Kwak and Kim [2] proposed an integrated management model

that includes pricing, production planning, and marketing for new
and remanufactured products. In this paper, it was found that
when remanufacturing was carried out with the production of new
products, the profit was higher, and the environmental impact was
lower than that of the case without remanufacturing. However,
this study has a limitation in that the design of the remanufactured
product and the collected EoL product are identical. On the other
hand, Kwak [3] focused on the fact that the design of the remanu-
factured product may differ from the collected EoL product.
Based on the assumption that some of the collected EoL products
or modules can be upgraded (or downgraded) to produce a remanu-
factured product, Kwak [3] proposed a mixed integer programming
model to find the optimal line design of new and remanufactured
products. This model aimed to present the design optimization of
remanufactured and new products to maximize profits while mini-
mizing environmental impact. However, there is a limitation in
this study considering only one model of EoL product.
Most of the studies mentioned above have limitations in that they

do not consider the design of EoL products required for remanufac-
turing or consider only a single product design. However, it is
important to design the optimal remanufactured product with
various designs and specifications that can be used during remanu-
facturing, unless the EoL product design is maintained as it is
during remanufacturing. In addition, little consideration was given
to the efficiency of the disassembly process, an essential task in
designing remanufactured products.

2.2 Design Implications From Online Data. With the
increasing amount of online channels and the development of

data analysis techniques, online user-generated data has been uti-
lized in many research areas. In the field of data-driven design
[19], many studies analyze the online data and draw implications
for product design using various methods.
Suryadi and Kim [20] proposed a methodology for analyzing the

effect of product features on the product sales rank. The authors col-
lected customer reviews from Amazon.com and pre-processed the
data. The lemmatized words were trained by the Word2Vec model
and embedded into the vector distribution. From these word
vectors, noun vectors were filtered and grouped by X-means cluster-
ing, K-means clustering with the automatically determined optimal
cluster numbers. The Word2Vec model assigns vectors in a way
that relevant words are located closer than irrelevant words, so clus-
tering would bring similar words into the same group. After cluster-
ing, the feature clusters were identified by analyzing the frequency of
cluster center words in product manual documents. Those with the
frequency above a certain threshold were selected as feature
words, and clusters to which feature words belong became feature
clusters. Using the extracted feature words, the authors analyze the
relationship between product features and sales ranks.
Tuarob and Tucker [21] presented a methodology for analyzing

the changes in customer satisfaction for product features. The
authors collected the Twitter mentions related to smartphone prod-
ucts and extracted feature-related words using an opinion mining
algorithm. Then, user sentiments for these feature words were mea-
sured for different generations of products, e.g., iPhone4 and
iPhone5. By observing the changes in positive and negative senti-
ments for each feature, the implications for product features can
be obtained. Joung and Kim [22] also used sentiment analysis for
analyzing the importance of product features. The authors collected
the smartphone review data and extracted keywords for product fea-
tures using Latent Dirichlet allocation (LDA), a probabilistic topic
model that identifies hidden topics in a large amount of textual
data [23]. Then, the sentiment intensity for each keyword was mea-
sured. The intensity can be an indicator for customer satisfaction for
product features and the result can help product designers reflect
customer preferences in product design.
In this study, the online data were used to estimate the partial

utility for product parts or modules. The Word2Vec model was
used to extract keywords related to the predefined parts, and term
frequency (TF) was used for measuring the importance of parts.

2.3 Disassembly Planning. Another research flow related to
remanufactured product design is disassembly planning. Disassem-
bly is a systematic approach to removing a group of components or
parts or sub-assemblies from a product for a given purpose and is a
very crucial step in the remanufacturing process in terms of acquir-
ing materials for production. In particular, as the release of products
with designs that are difficult to disassemble has increased [11], dis-
assemblability has become a key factor in remanufacturing.
Gungor and Gupta [24] proposed a methodology to generate dis-

assembly sequence plans (DSPs) for the product in the presence of
uncertainty, considering that unpredictable errors or variations can
occur over the life of the product. Design variations that can be
occurred during use may require different disassembly procedures
during remanufacturing. However, this study did not consider the
design decisions of remanufacturing and assumed that all parts
require the same tool type for disassembly.
Cong et al. [25] proposed a method of optimizing the process of

disassembling parts according to the EoL strategy for each part,
focusing on the EoL process of the product. The proposed method-
ology was verified using a hard disk drive case study. The recovery
strategy for each part of the hard disk drive was determined, and the
disassembly order and disassembly level were determined. The
results of this study showed that when the optimal disassembly
sequence and level were applied, the total recovery profit increased
and the disassembly time was shortened. Also, Francesco et al. [26]
presented a new algorithm to solve a multi-objective optimization
problem that maximizes parallelism, ergonomics, and worker
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workload balance while minimizing disassembly time and the
number of product rotations.
Most studies related to disassembly planning assumed that the

design of the remanufactured product is predetermined. There
have been few studies that propose methodologies by integrating
with product configuration design decisions. As mentioned above,
however, the design of the remanufactured product may be differ-
ent, and the specifications of the EoL product used for this may
also vary. Therefore, research on an integrated method to determine
the design of the remanufactured product using various EoL prod-
ucts and minimize the disassembly time that occurs according to the
configuration design is required.

3 Methodology
The purpose of this paper is to identify the optimal configuration

design of remanufactured products and harvesting planning that
considers customers’ satisfaction and disassembly efficiency. The
overview of the proposed methodology is shown in Fig. 1. The
first step is to collect data related to the EoL products that can be
utilized for remanufacturing. The collected data in this step
include data such as the configuration of the EoL products (i.e.,
module type and specifications), the reusability of each component,
and the expected take-back quantity of the EoL products. The
second step is to analyze the customers’ online review of the EoL
products to determine the customers’ partial utility of each compo-
nent or module. Since remanufactured products are made using pre-
viously released products, there are enough customer reviews
regarding EoL products. Therefore, online review analysis can
provide an inexpensive and quick way to understand customer per-
ceptions of each part of each EoL product. The third step is to iden-
tify the disassembly operations to extract each component for each
EoL product. In this step, the relationship between each part and the
disassembly process is defined in the form of a disassembly matrix.
The next step is the optimization step, and the model deals with the
bi-objective optimization problem. One is to maximize the sum of
the customer’s partial utility (total utility), and the other is to min-
imize the disassembly time of EoL products. Based on the results
derived through this methodology, it is expected to be able to
derive an appropriate remanufactured product configuration
design and make decisions on harvesting planning for EoL products
simultaneously.

3.1 Customer Utility Estimation. To predict partial utility for
a part of a product, in this paper, the importance of the part—the

degree to which the customer is paying attention to each part—
was used. The importance can be obtained from online user-
generated data such as customer reviews, twitter mentions, and
other social network services. In this study, online review data
were used to estimate the importance of each part.
The process of part importance extraction consists of three steps:

(i) data collection and pre-processing, (ii) word embedding and
keyword identification, and (iii) importance analysis. First, the
online review data are collected from an online shopping website.
Since the collected data is the free-format text data, it is cleaned
by removing punctuation and special characters. Also, all uppercase
letters are converted to lowercase letters. In the next step, the
resulted data is embedded by Word2Vec, and each word has its
own vector representation. The keywords for predefined parts are
obtained from these word vectors. As mentioned in Sec. 2,
Word2Vec assigns vectors so that related words are closely
located in the vector space. Based on this, the top five words
closest to the designated word are extracted and then manually fil-
tered. The specific words for product parts and keywords will be
presented in the case study in Sec. 4. In the final step, the impor-
tance of each part is obtained by analyzing online reviews.
Among various methods for analyzing online reviews, term fre-
quency (TF) [20,27], a numerical statistic that reflects the impor-
tance of words in the collection documents is modified and
applied. The TF model used in this study is shown in Eq. (1)
where nij is the frequency of word i in document j. The value
increases proportionally to the number of times a word appears in
the reviews.

TFi =

∑
j nij∑

j

∑
i nij

(1)

While the importance obtained for each part is used as an esti-
mate of the customer’s partial utility in this study, note that other
methodologies can be applied according to the user for the utility
prediction for each part.

3.2 Disassembly Matrix. In this study, a disassembly matrix
Dio is constructed to indicate the relationship between components
and disassembly operations required to extract them. Tables 1 and 2
show the disassembly matrix of the EoL products used in the case
study. In the matrix, the columns represent the operations (o)
required for the disassembly process of EoL product (k), Ok

o (avail-
able in Appendices A and B ), and the rows refer to the components
of the product. Each entry (i, o) can take the value of 0 or 1. The

Fig. 1 Overview of the proposed methodology
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value of 1 indicates that disassembly operation o is required to
extract the component corresponding to i. Otherwise, the entry is 0.
Although the EoL products in Tables 1 and 2 are manufactured

by the same manufacturer, these matrices show that the disassembly
operations and sequences required for disassembly are different. It
is because the design structure and assembly method vary between
the two products. For example, to disassemble all the components
indicated in column 1 of the tables, EoL P1 and EoL P2 require
17 and 14 disassembly operations, respectively. Also, this design
difference affects the disassembly process required to extract indi-
vidual components. In the case of extracting Near Field Communi-
cation & Wireless Charging (NFC & W/C assembly) from EoL P1,
it needs to go through the disassembly operations ofO1

1 toO
1
4, but in

the case of EoL P2, it can be extracted by disassembly operations of
O2

1 andO
2
2. Therefore, it is necessary to plan harvesting according to

the design of the EoL product, the process of combining parts, and
the design of the remanufactured product. These matrices help to
identify the operations required for the extraction.

3.3 The Model for Bi-Objective Optimization. This paper
deals with a model for bi-objective optimization problems to max-
imize customer utility and minimize disassembly time. ϵ-constraint
approach is used to solve this problem. ϵ-constraint is a representa-
tive method used when dealing with various objective functions in
an optimization problem. It optimizes one of the objective functions
by using other objective functions as constraints [28].

maximize f1(x) :
∑

K

∑

J

∑

I

uijk · xijk

minimize f2(x) :
∑

K

∑

J

∑

I

Td
ijk · xijk

(2)

where

Tlk · nlok = Td
ok and Dijok · Td

ok = Td
ijk

subject to

∑

I

xijk = 1 ∀ j (3)

xijk = CRi ∀i, j, k (4)

min(Qk · rijk · xijk) ≥ R (5)

xijk ∈ {0, 1} ∀i, j, k (6)

Equations (2)–(6) represent the mathematical programming
model for the integrated model of remanufactured product configu-
ration and harvesting planning. The objective function f1(x) maxi-
mizes the sum of customers’ partial utility and f2(x) minimizes the
total harvesting time, as shown in Eq. (2). f1(x) represents one of
the objective functions to maximize the sum of the customers’
utility values (uijk) for the modules selected for the remanufacturing
design (xijk= 1). The other objective function f2(x) indicates the sum
of harvesting time (Td

ijk) taken to extract modules selected for the
remanufacturing design (xijk= 1). The harvesting time (Td

ijk) is
derived by multiplying the average tool (l) usage time (Tl) required
for operations (e.g., Clip = 3 s per unit), the required number of the
operation o with tool l (nlo) (e.g., five times), and disassembly
matrix (Dio) indicating the disassembly operation o that needs to
be performed to extract the module i (see Tables 1 and 2).
The constraint shown in Eq. (3) indicates that only one module

instance (xijk) can be selected among the instances (I) of each

Table 1 Disassembly matrix for EoL P1

Component

Disassembly operations

O1
1 O1

2 O1
3 O1

4 O1
5 O1

6 O1
7 O1

8 O1
9 O1

10 O1
11 O1

12 O1
13 O1

14 O1
15 O1

16 O1
17

NFC & W/C Assembly 1 1 1 1
Loud Speaker Assembly 1 1 1 1 1
Sim Card Tray 1
Earpiece Speaker 1 1 1 1 1 1 1 1 1
Front Camera 1 1 1 1 1
Rear Camera 1 1 1 1 1 1 1 1 1
Headphone Jack 1 1 1 1 1 1 1 1
Proximity Sensor 1 1 1 1 1 1 1 1 1
Vibration Motor 1 1 1 1 1 1 1 1 1
Fingerprint Sensor 1 1 1 1 1 1 1 1 1 1 1

Table 2 Disassembly matrix for EoL P2

Component

Disassembly operations

O2
1 O2

2 O2
3 O2

4 O2
5 O2

6 O2
7 O2

8 O2
9 O2

10 O2
11 O2

12 O2
13 O2

14

NFC & W/C Assembly 1 1
Loud Speaker Assembly 1 1 1
Sim Card Tray 1
Earpiece Speaker 1 1 1 1 1 1 1 1
Front Camera 1 1 1 1
Rear Camera 1 1 1 1 1 1 1 1
Headphone Jack 1 1 1 1 1 1
Proximity Sensor 1 1 1 1 1 1 1 1
Vibration Motor 1 1 1 1 1 1 1 1
Fingerprint Sensor 1 1
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module available in the EoL products (Uniqueness constraint). If
customer requirements (CRi) are specified for a particular module
instance (xijk), a constraint can be added as shown in Eq. (4). The
constraint in Eq. (5) indicates that the minimum reusable quantity
of each module, multiplied by the reusability of each module (rijk)
and the expected take-back quantity (Qk), should be greater than
the company’s remanufactured production target quantity (R).
The constraint in Eq. (6) restricts design variables (xijk are binary
variables).

minimize − f1(x)

subject to

gl(x) ≤ 0

hm(x) = 0

f2(x) ≤ ϵ

ϵ = f2(x
∗
1) + (f2(x

∗
2) − f2(x

∗
1)) · θ

0 ≤ θ ≤ 1

(7)

This optimization problem can be transformed into Eq. (7)
through the ϵ-constraint approach. The value of θ is a parameter
that determines the importance of the objective functions. If θ
value is 0, it is the same as the independent f1 minimization
problem. Otherwise, θ value is 1, it is the same as the independent
f2 minimization problem.

4 Case Study: Application to Smartphones
To demonstrate and test the new methodology developed in this

paper, an illustrative case study is conducted on configuration
design for remanufactured smartphones. According to ELDA, a
tool for predicting appropriate EoL strategies based on product
characteristics, it is advantageous to remanufacture or recycle
through disassembly rather than other EoL strategies for electronics,
which have a faster technology replacement cycle rather than
product wear-out cycle [12,29]. However, the smartphone is one
of the representative products that cause waste of natural resources
and e-waste due to the low percentage of EoL products being recov-
ered. Also, to protect the design of smartphones and core technolo-
gies, there are many cases where smartphones are designed in a
form that makes disassembly and repair difficult, such as the use
of irreplaceable parts and non-standard parts that require special
tools [30]. To handle this issue, this section provides the optimal
remanufactured smartphone design and disassembly sequence that
simultaneously considers customer utility and the disassemble time.

4.1 Presentation of Case Study. Two models of smartphones
launched by the same manufacturer were considered. The two
models are composed of the same module (e.g., Front CAM, Rear
CAM), but there are differences in the instance of the module
(e.g., CAM instances can be megapixel: 5MP, 8MP) and the
design structure of the product: (i) mid-tier smartphone (P1) and
(ii) high-tier smartphone (P2).
Table 3 shows the parameter settings for the customer’s utility

and reusability for EoL smartphones. The smartphone-specific
parts and/or modules considered in this study were selected
mainly for parts with high residual value and recyclability, as
shown in the first column of Table 3.
The partial utility for each of these 10 modules was obtained by

analyzing online reviews. The online reviews used in the TF analysis
were reviews written by customers on the Amazon site from 2017 to
2020, and the number of reviews for P1 and P2 was 938 and 931,
respectively. First, the words in the review data were embedded
into vectors, and the keywords for each module were extracted
from these word vectors. The resulting keywords are as follows.
{NFC &W/C Assembly : [nfc, wireless charging, wireless charge],
Loud Speaker Assembly : [speaker, sound, volume], Sim Card
Tray : [tray, ejector, eject, removal, pin], Earpiece Speaker :
[speaker, sound, volume], Front Camera : [camera, picture, image],
Rear Camera : [camera, picture, image], Headphone Jack : [head-
phone, earbud, earphone, bud], Proximity Sensor : [N/A], Vibration
Motor : [vibration], Fingerprint Sensor : [fingerprint, finger]}. Next,
the customer’s partial utility for parts was predicted through the TF
value of these keywords (Column 2-4). The TF column shows the
values from Eq. (1). Note that the TF value for the proximity sensor
and vibration motor is 0.000. This is because either the part has no
keyword (proximity sensor) or the part was not mentioned much in
the review (vibration motor). To compensate for this, an offset
(0.1) was applied to the initial TF result. Then, the TF with offset
was normalized so that the total utility values were summed up to 1.
Reusability indicates the possibility of reusing parts of EoL prod-

ucts at the time of remanufacturing and was assumed based on pre-
vious studies [31]. It is assumed that high-tier product P2 has higher
reusability than mid-tier product P1. The number of EoL products
that can be collected is assumed to be 15% of the sales volume of
the smartphone model [30]. The number of EoL products of P1
and P2 that can be collected was set to 1.5 and 1.3 million units,
respectively.

4.2 Disassembly Matrix for End-of-Life Product. Tables 1
and 2 show the disassembly matrices for the EoL product P1 and

Table 3 Parameter setting for EoL products

Component

P1 P2

Utility

Reusability

Utility

ReusabilityTF TF_offset TF_norm TF TF_offset TF_norm

NFC & W/C Assembly 0.068 0.168 0.066 0.650 0.019 0.119 0.044 0.700
Loud Speaker Assembly 0.233 0.333 0.130 0.740 0.226 0.326 0.120 0.840
Sim Card Tray 0.075 0.175 0.068 0.950 0.058 0.158 0.058 0.950
Earpiece Speaker 0.233 0.333 0.130 0.740 0.226 0.326 0.120 0.840
Front Camera 0.323 0.423 0.165 0.500 0.484 0.584 0.215 0.787
Rear Camera 0.323 0.423 0.165 0.500 0.484 0.584 0.215 0.787
Headphone Jack 0.030 0.130 0.051 0.740 0.110 0.210 0.077 0.840
Proximity Sensor 0.000 0.100 0.039 0.950 0.000 0.100 0.037 0.950
Vibration Motor 0.000 0.100 0.039 0.740 0.000 0.100 0.037 0.840
Fingerprint Sensor 0.271 0.371 0.145 0.740 0.103 0.203 0.075 0.840

Sum 2.556 1.000 2.710 1.000

Total Reviews 938 931
Total TF 133 155

Note: Total Reviews: The number of reviews about a specific product. Total TF: The sum of the term frequencies for all features for all reviews.
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P2. The matrix represents the operations required to extract compo-
nents of EoL products. As shown in Tables 1 and 2, even though the
two products are produced by the same manufacturer, the disassem-
bly order and level in the part extraction process may be different.
Table 4 shows disassembly complexity for disassembly opera-

tions (Tlk). The disassembly complexity depends on the joint type
and the type of tools required to disassemble the joint. When
extracting parts that require complex disassembly operations,

special equipment or processes may result in longer disassembly
times and less efficiency in the overall disassembly process. For
example, in the case of smartphones, the parts are combined with
glue, screw, clip, cable, or slot as shown in the first column of
Table 4. Among these methods, when using glue to assemble a
smartphone without using external screws, special equipment
(i.e., opener, suction) to remove the glue is required. Therefore, it

Table 4 Data related to disassembly operations for EoL P2

Time per unit (s)

Disassembly operations (number of disassembly)

O2
1 O2

2 O2
3 O2

4 O2
5 O2

6 O2
7 O2

8 O2
9 O2

10 O2
11 O2

12 O2
13 O2

14

Gluea 60 5 5
Screw 5 11 3 1
Clip 3 1 3 1 1 1
Cable 5 2
Slot 5 1 1 1 1 1 1 1

Time per step (s) 300 55 15 5 3 10 9 5 8 8 13 5 5 300

aRepair guide distributed by the manufacturer.

Table 5 Optimization results for configuration design

Components

θ = 0 θ = 0.3 θ = 0.6 θ = 0.9 θ = 1

P1 P2 P1 P2 P1 P2 P1 P2 P1 P2

NFC & W/C
Assembly

0 1 0 1 0 1 1 0 1 0

Loud Speaker
Assembly

0 1 0 1 0 1 1 0 1 0

Sim Card Tray 0 1 1 0 1 0 1 0 1 0
Earpiece Speaker 0 1 0 1 0 1 1 0 1 0
Front Camera 0 1 0 1 0 1 0 1 0 1
Rear Camera 0 1 0 1 0 1 0 1 0 1
Headphone Jack 0 1 0 1 0 1 0 1 0 1
Proximity Sensor 0 1 0 1 0 1 1 0 1 0
Vibration Motor 0 1 0 1 0 1 1 0 1 0
Fingerprint Sensor 0 1 0 1 0 1 0 1 1 0

Customer utility 998 1008 1008 1054 1124
Disassembly time (s) 741 746 746 1160 1225

Fig. 2 Efficient frontiers of the results

Fig. 3 Harvesting planning for EoL P1 [32,33]
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can be confirmed that the disassembly time takes longer than other
assembly methods.

4.3 Results

4.3.1 Product Design Configuration. Given the characteristics
of remanufacturing that can be upgraded or combined with new
parts, the design of remanufactured product can be maintained as
it is (refurbishment) or changed to new designs (remanufacturing).
Table 5 shows the optimization results for the optimal combination
of modules that can be used in the design of remanufactured prod-
ucts that maximize customer satisfaction while minimizing disas-
sembly time. Optimal product designs were identified by
gradually increasing the θ value (Eq. (7)) of the optimization
problem. Figure 2 shows the objective values according to θ as
an efficient frontier. These results show that the design of the rema-
nufactured product considering only customer satisfaction may not
be the optimal design when considering the efficiency of disassem-
bly simultaneously. To minimize disassembly time only (θ= 0), it
was optimal to use only EoL P2 for the remanufactured product.
As shown in the results of this study (Table 5), when only cus-
tomer utility is considered (θ= 1, Design with the highest sum
of partial utilities), the new design using P1 and P2 modules
together is the optimal design. On the other hand, when only the
disassembly time is considered (θ= 0), it was optimal to design
the same with the P2 product. As shown in Tables 1 and 2, the
modules of EoL P1 require more disassembly operations (17 oper-
ations) than EoL P2 (14 operations) because they are assembled in
a more complex form. However, when considering the customer’s
utility together (0 < θ≤ 1), it can be seen that it is optimal to use
parts in both EoL P1 and P2 rather than using only the EoL P2
design.

4.3.2 Harvesting Planning. This model finds the optimal
design as well as the harvesting planning of EoL products for that
design. Figures 3 and 4 show the required disassembly operations
of EoL P1 and P2 to produce the optimal design when θ value is
0.9. The blue-colored boxes in Figs. 3 and 4 indicate the modules
that need to be extracted from each product. As shown in Figs. 3
and 4, six modules including NFC & W/C Assembly are extracted
from EoL P1, and the remaining four modules are extracted from
EoL P2.
According to this result, EoL P1 only needs O1

1 to O1
9, O

1
13, and

O1
14 operations to extract the required parts, and EoL P2 only

requires O2
1 to O2

7, O
2
9 to O2

11, and O2
14 operations. Based on these

results, it is possible to determine the selective disassembly
sequence and level that can minimize the disassembly time for
each EoL product while selecting the product design.

5 Conclusion and Future Work
This paper proposes an integrated methodology for designing a

remanufactured product by comprehensively considering the cus-
tomer analysis through online review and efficiency of the remanu-
facturing process. Considering two objectives of maximizing
customer utility and minimizing harvesting time, the integrated
model optimizes (i) configuration design suitable for remanufac-
tured products and (ii) harvesting planning that determines
optimal disassembly orders and levels for each EoL product. This
integrated methodology allows product designers to understand
the market trends and consider the efficiency of the remanufactur-
ing process at the design stage of a remanufactured product, rather
than considering only the recovery rate of the components/
modules.
To demonstrate the proposed methodology, examples of the

smartphone were used. Smartphones use materials with high poten-
tial value, but they have different design structures and low disas-
semblability, making them difficult to remanufacture. Therefore,
it is necessary to apply this integrated methodology to design for
remanufacturing while simultaneously analyzing customer percep-
tion and planning a disassembly. Through applying the proposed
methodology, the design of an appropriate remanufactured
product design considering the customers’ utility and the harvesting
process of extracting parts for the design simultaneously were
obtained. Also, it showed that the design can be changed according
to the importance of the customers’ utility value and the efficiency
of the remanufacturing process. These results show that it is neces-
sary to consider the market (customer) analysis and the efficiency of
the remanufacturing process at the stage of designing remanufac-
tured products. This methodology is expected to be used as a
decision-making tool for designers or companies that want to intro-
duce remanufacturing for design strategies for remanufacturing
products.
With the recent development of data analysis technology, optimal

integration of product configurations based on data-driven customer
analysis is a promising field for future research. In this study, the
importance of each part was predicted by using the TF analysis
for simplicity, but in future research, the latest methodologies that
can predict the utility of customers for each part based on online
data can be applied. In addition, this study did not discuss the

Fig. 4 Harvesting planning for EoL P2 [34]
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improvement for the structure and assembly methods of EoL prod-
ucts. However, since the remanufacturing process depends on those
design factors, the methodology for improving disassemblability of
the product design for remanufacturing is expected to be a future
study. Also, in this study, the utility value and harvesting time of
customers were considered as objective functions, but it is likely
to be possible to expand research on profitability or market share
by applying the demand model and detailed cost factors in the
future.
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Nomenclature
I = index set for module instances, i∈ I
J = index set for modules, j∈ J
K = index set for End-of-Life (EoL) products, k∈K
L = index for disassembly tools, l∈ L
O = index set for disassembly operations, o∈O
R = target production quantity of the remanufactured product
nlo = average number of uses of tool l during disassembly

operation o
rijk = reusability of module instance i of module j from EoL

product k
uijk = customer utility for module instance i of module j from EoL

product k
xijk = design variable for module instance i of module j from EoL

product k is selected in the design configuration (=1) or not
(= 0)

Dio = disassembly matrix, the entry represents 1 if disassembly
operation o is required to extract module instance i and 0 if
not.

Qk = expected take-back quantity of EoL product k
Tl = average usage time per use of disassembly tool l (sec)

Td
ijk = disassembly time it takes to extract module instance i of

module j from EoL product k
Td
o = disassembly time it takes to perform operation o

CRi = customer’s requirements for module instance i
θ = parameter that determines the importance of objectives

Appendix A: Disassembly Operations for End-of-Life P1

Disassembly operations

O1
1 Disassemble back Cover

O1
2 Unscrew

O1
3 Disassemble Antenna assembly

O1
4 Disassemble NFC, W/C Assembly

O1
5 Disassemble Loud Speaker Assembly

O1
6 Disconnect Sim tray

O1
7 Disconnect Power

O1
8 Disassemble Motherboard

O1
9 Disassemble Earpiece Speaker

O1
10 Disassemble Front Camera

Continued

Disassembly operations

O1
11 Disassemble Rear Camera

O1
12 Disassemble Headphone Jack

O1
13 Disassemble Proximity Sensor

O1
14 Disassemble Vibration Motor

O1
15 Disassemble Battery

O1
16 Disassemble Display

O1
17 Disassemble Fingerprint Sensor

Appendix B: Disassembly Operations for End-of-Life P2

Disassembly operations

O2
1 Disassemble back Cover

O2
2 Disassemble NFC, W/C Assembly

O2
3 Disassemble Loud Speaker Assembly

O2
4 Disassemble Sim Tray

O2
5 Disconnect Power

O2
6 Disconnect motherboard and daughterboard

O2
7 Disassemble Motherboard

O2
8 Disassemble Earpiece Speaker

O2
9 Disassemble Front Camera

O2
10 Disassemble Rear Camera

O2
11 Disassemble Headphone Jack

O2
12 Disassemble Proximity Sensor

O2
13 Disassemble Vibration Motor

O2
14 Disassemble Fingerprint Sensor
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