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Multiple Target Exploration
Approach for Design Exploration
Using a Swarm Intelligence and
Clustering
In engineering design problems, performance functions evaluate the quality of designs.
Among the designs, some of them are classified as good designs if responses from perfor-
mance functions satisfy a target point or range. An infinite set of good designs in the design
space is defined as a solution space of the design problem. In practice, since the perfor-
mance functions are analytical models or black-box simulations which are computationally
expensive, it is difficult to obtain a complete solution space. In this paper, a method that
finds a finite set of good designs, which is included in a solution space, is proposed. The
method formulates the problem as optimization problems and utilizes gray wolf optimizer
(GWO) in the way of design exploration. Target points of the exploration process are
defined by clustering intermediate solutions for every iteration. The method is tested with
a simple two-dimensional problem and an automotive vehicle design problem to validate
and check the quality of solution points. [DOI: 10.1115/1.4043201]

1 Introduction
Engineering design problems can be formulated as traditional

optimization problems which consist of design variables, con-
straints, and an objective function (or objective functions for multi-
objective optimization problems). In the problems, performance
functions that evaluate the quality of the products can be involved
in the constraints or objective functions. For example, in product
family design, the objectives in the problem are often maximizing
performance and minimizing costs. The platform-design problem
can be formulated as one comprehensive optimization problem
with one objective where the multiple objectives are combined
into one function [1]. There can be multiple objective functions in
product family design to obtain a set of Pareto-optimal solutions
[2]. For the engineering design problems that have multiple disci-
plines, they are decomposed into subproblems that represent differ-
ent disciplines. The distributed problems can be obtained from
multidisciplinary design optimization (MDO) techniques, such as
collaborative optimization [3], bilevel integrated system synthesis
[4], and analytical target cascading [5]. However, in the early stage
of an engineering design process, the target of performance functions
and the boundary of design variables are not certain. They can be
changed during the design process because of the uncertainty in real-
world situations. Also, designers may focus on the feasible region of
the design space rather than finding one optimal solution.
Instead of the point-based design, which finds the best design

point in iterative processes, set-based design can be adapted to
answer the challenge. When the parameters and the target for the
design process are assured, the point-based design can be used.
However, in practice, the design optimization problem is uncertain
because of the variability of the parameters in the system. With set-
based design, designers can keep multiple solutions and narrow
down the set of candidate designs by removing unnecessary solu-
tions [6–8]. Since designers can interact during the design
process, they can gain insight from the intermediate solutions of
the process and have a better understanding of the system. Design-
ers can even adjust the parameters of the problem based on the
information [9]. This concept has been adopted to optimization

problems with various applications, such as MDO [10], aerospace
industry [11], and high-rise building structures [12]. In this paper,
we propose a method that finds a finite set of feasible designs
using design exploration which would be a part of set-based
design approaches. K-means clustering and gray wolf optimizer
(GWO) are utilized in the way of design exploration. The related
research is discussed in Secs. 1.1 and 1.2.

1.1 Design Exploration. As the set-based design starts from
finding the feasible designs and solution space in the design
space, we reviewed the literature about design exploration in this
section. The solution space is a region in the design variable
space that satisfies the target range and constraints, which is the
result of design-exploration processes. Instead of having one best
point, designers will get an infinite set of solutions so that they
can easily adapt to a new target. There are incomplete and complete
methods of having a solution space. Obviously, complete methods
will provide more solutions than incomplete methods, but it takes a
much longer time to solve the problem.
One of the ways to achieve the solution spaces is from algorithms

for constraint satisfactory problem (CSP). CSP is a mathematical
problem that consists of variables, domain, and constraints. The
goal of the problem is to find values for the variables that are in
the domain and satisfy the constraints. In most cases, researchers
have focused on CSP with discrete variables [13]. However, for
design optimization problems, continuous variables are mostly
used. In order to use the discrete CSP, Lottaz et al. [14] transformed
the continuous CSP into discrete CSP and used discrete CSP tech-
niques directly. Also, Yannou et al. [15] combined a CSP technique
and Monte Carlo simulation which is inefficient when the system is
highly constrained. Instead of applying Monte Carlo directly, the
authors used the CSP technique first with incomplete approach
since obtaining the complete set of the solution space is computa-
tionally expensive. After getting the incomplete solution space,
they performed Monte Carlo simulation. One of the algorithms
for continuous CSP is an interval partitioning method [16]. This
algorithm partitions the domains of variables into smaller boxes
so that they can be determined if feasible or infeasible. For CSP
techniques, the functions in the problem formulation should be
formed as analytical expressions. Moreover, it is difficult to solve
the problem with high-dimensional functions.
In engineering design problems, Pareto frontiers can be used to

get the solution space. Mattson and Messac [17] proposed a
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method to find Pareto frontiers of multi-objective problems. With
this method, the authors can obtain a set of solutions that maximize
performance. The formulation in this paper has a lower and upper
bound of responses, while the performance is maximized in
Ref. [17]. Another method, isoperformance [18], is a systematic
method to obtain the solution space and select the best design
from the solution space. The authors not only maximize the perfor-
mance but also consider other criteria such as cost and risk. There
are three steps in the method: obtaining a performance-invariant
set of solutions using a gradient-based approach, eliminating
some of the solutions based on noninferiority criteria (i.e., only
Pareto-optimal points remain), and discussing the designs in the
solution space to finalize the design. However, the step size in the
first step would be too small to explore a wide range of space.
Also, they formulated the problem with a target point, but we
focus on the problem that contains a target range. Monte Carlo
simulation is another method that the designers can use. Eichstetter
et al. [19] proposed a method that provides a box-shaped solution
space. With the step by step process, designers can find an incom-
plete set of good designs. The set is a Cartesian product of lower and
upper bounds, which creates a box-shaped space. Since the final
solution of the method is a box with lower and upper bounds, the
solution cannot cover two different islands in the solution space.
Also, if the shape of the feasible region is not convex, the box-
shaped solution could be missing many solutions.

1.2 GrayWolf Optimizer. In this paper, a method is proposed
that utilizes a derivative-free method to find good design points that
satisfy the target range. Evolutionary algorithms (EA) are one of the
widely used algorithms for exploration and optimization. The algo-
rithms are inspired by biological evolution. It starts with a random
population, and the quality of each individual is evaluated by a
fitness function. For each iteration, the population is evolved
using crossover and mutation. EA includes genetic algorithm
(GA) [20], genetic programming [21], and evolutionary strategy
[22]. Another method is swarm intelligence. It imitates biological
systems such as bird swarms and ant colonies. Some of the
methods include ant colony optimization [23], particle swarm opti-
mization (PSO) [24], and GWO [25].
In the proposed method, GWO is chosen because of its iteration

process. Different from other methods, we do not have to wait
until it converges. The algorithm starts with a fixed number of
agents and maximum iterations, and it stops at the maximum itera-
tion. Therefore, we can calculate the exact number of function eval-
uations with GWO.

Algorithm 1 GWO

Input: Number of search agents (n), maximum number of GWO iterations
(tmax)
procedure GWO(n, tmax)

Initialize Xi(1) (i = 1, 2, . . . , n)
Calculate the fitness for each Xi(1)
Xα ← the best agent
Xβ ← the second best agent
Xδ ← the third best agent
t ← 1
while t ≤ tmax do
for i = 1,… , n do
Update the agent as in Eq. (7)
Calculate the fitness for Xi(t + 1)

end for
Update a, A, and C
Update Xα, Xβ , and Xδ

t ← t + 1
end while
return Xα

end procedure

GWO is a metaheuristic method that computationally simulates
gray wolf hunting for the prey [25]. The social hierarchy of
wolves is mathematically modeled by categorizing all the gray
wolves into four types of wolves. The wolf who has the best
fitness value is denoted as alpha (α). The second and third best
wolves are named as beta (β) and delta (δ), respectively. The rest
of the wolves are considered as omega (ω). In GWO, the search
process of the ω wolves is guided by α, β, and δ. The group
hunting process that encircles the prey (the optimal solution of an
optimization problem) is modeled as follows:

D = C ◦ Xp(t) − X(t) (1)

X(t + 1) = Xp(t) − A ◦ D (2)

where ◦ indicates the Hadamard product, t represents the current
GWO iteration, Xp represents the position vector of the prey,
and X denotes the position vector of a gray wolf. The vectors
A, C, and D are intermediate vectors that imply randomness of
the process. The intermediate vectors have the same dimension
as the dimension of Xp and X. The vectors A and C are defined
as follows:

A = 2a ◦ r1 − a (3)

C = 2r2 (4)

where a is a vector of which the elements are linearly decreased
from 2 to 0 during the optimization process, and r1 and r2 are
the random vectors whose elements are in [0, 1]. As it is
shown in Eq. (2), wolves are updated toward the prey. However,
the prey is unknown during the search process in mathematical
models. The prey is estimated by α, β, and δ since it is
assumed that the three best solutions have better knowledge
about the location of the prey [25]. The updating scheme of
each wolf is as follows. Also, the algorithm of GWO is described
in Algorithm 1.

Dα = C1 ◦ Xα − X, Dβ = C2 ◦ Xβ − X, Dδ = C3 ◦ Xδ − X

(5)

X1 = Xα − A1 ◦ Dα, X2 = Xβ − A2 ◦ Dβ, X3 = Xδ − A3 ◦ Dδ

(6)

X(t + 1) =
X1 + X2 + X3

3
(7)

In this paper, a concept that provides a finite set of good
designs is proposed. Numerical experiments for a small
problem and an automotive vehicle design are performed to test
the proposed method. The rest of the paper is organized as
follows. In Sec. 2, the proposed method is explained in detail.
In Sec. 3, a two-dimensional problem and a bicycle model are
tested for the numerical experiment. Finally, we present the dis-
cussion and conclusion in Secs. 4 and 5, respectively.

2 Methods
2.1 Problem Statement. The main goal of this paper is to

introduce a new method that provides a finite set of good designs.
If a design point in the design space satisfies the boundary of
design variables and the response of the point is in the target
range, we define it as a “good” design. Otherwise, it is a “bad”
design. A set of feasible designs will give designers a wide range
of alternatives for the final decision. The proposed method can
solve engineering design problems with a special structure, in
which responses of the performance functions have two-sided
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bounds. The purpose of the method is obtaining a set of feasible
designs, which satisfies solution space F which is as follows:

F = {x | xL ≤ x ≤ xU,

TL ≤ R( x) ≤ TU}
(8)

In Eq. (8), x is a vector of design variables and R(x) represents
the performance functions. There are N number of design variables
and M number of performance functions in the problem. A lower
and upper bound of the design variables are represented as xL

and xU, and they are called a boundary of the design variables.
Also, lower and upper bounds of the responses are denoted as TL

and TU, which are called a target range in this paper.

2.2 Proposed Methods: Multiple Target Exploration. The
proposed method has three features that make GWO sample good
design points efficiently. First, in order to use GWO as a sampling
technique, a filtering process for every intermediate solution is
added to the algorithm. Second, we modified existing updating
scheme in GWO for better exploration. Lastly, a clustering
method is used to obtain target points for design exploration and
define fitness functions of the algorithm. In the method, penalty
function, ϕ(y), is used as a fitness function of the problem. Either
the constraints for the boundary of the design variables, x≥ xL

and x≤ xU, or the target range of responses, y≥TL and y≤TU,
can be relaxed to define the penalty function. The constraints for
the boundary are hard constraints that must be satisfied in the
problem because these constraints have physical meanings in
most cases. However, the constraints y≥TL and y≤TU can be
considered as soft constraints. As responses of performance func-
tions represent a quality of design and the target range is deter-
mined by designers, the target range can be violated. An
objective function, or a fitness function with relaxed constraints,
is as follows:

ϕ(R(x); TL, TU) =
∑M
j

max{Rj(x) − TU
j , T

L
j − Rj(x), 0} (9)

In the proposed method, however, different penalty functions
other than Eq. (9) are used. Instead of using TL and TU to
define the penalty function, a target point, T, that is in the target
range (TL≤T≤TU) is selected to construct a penalty function
as in Eq. (10). The target points are obtained by using a clustering
method.

ϕ(R(x); T) = |R(x) − T| (10)

With the new penalty function, GWO keeps updating toward
the target point even if the agents are in the target range. When
Eq. (9) is used as a fitness function, three best agents are not
updated once it finds three good designs because Xα, Xβ, and
Xδ are updated only if there is an agent that has lower fitness
value than them. They cannot become different points once they
are in the target range (i.e., fitness values equal to 0). However,
with the new penalty function, they keep being updated. The
detailed explanation for three important features of the method
is as follows:

(1) Adding the filtering process for every intermediate solution.
We consider all the intermediate points during the optimi-

zation process rather than merely taking the final solution. In
the method, the searching process of the optimization
problem is considered as a sampling process that finds mul-
tiple feasible points inF . For example, when GWO solves an
optimization problem which has Eq. (9) as an objective func-
tion, it evaluates all the fitness values for agents. During the
GWO iteration process, if the fitness is 0 (the point is in the
target range), we add the point to the set of good designs, G,
which has points that satisfy all the target ranges. Otherwise,
the point is added to the set of bad designs, B. Therefore, the
final results of the proposed methods are two sets of points.

Algorithm 2 is the GWO that is modified to obtain two sets of
points that contain good and bad designs, respectively.

Algorithm 2 GWO for design exploration 1 (GWODE1)

Input: Number of search agents (n), maximum number of GWO iterations
(tmax)
procedure GWODE1 (n, tmax)

G ← ∅, B ← ∅
Initialize Xi(1) (i = 1, 2, . . . , n)
Calculate the fitness for each Xi(1) as in Eq. (9)
Xα ← the best agent
Xβ ← the second best agent
Xδ ← the third best agent
t ← 1
while t ≤ tmax do
for i = 1,… , n do
if TL ≤ R(Xi(t)) ≤ TU then
G ← G ∪ {Xi(t)}

else
B ← B ∪ {Xi(t)}

end if
Update the agent as in Eq. (7)
Calculate the fitness for Xi(t + 1) as in Eq. (9)

end for
Update a, A, and C
Update Xα, Xβ , and Xδ

t ← t + 1
end while
return G, B

end procedure

(2) Modifying updating scheme of vectors in GWO.
The updating scheme for vectors in GWO is modified for

the design exploration process in two ways. First, the vector
a decreases only if certain conditions are satisfied. In the
original GWO, elements of the vector a are linearly
decreased from 2 to 0. For the vector A, if |A| > 1, agents
diverge from the prey; otherwise, they gather toward the
prey. Since the agents in design exploration do not want to
gather into a single point, elements in the vector a do not
have to be decreased to 0. We added a conditional statement
for updating the vectors and parameters. With a parameter s,
shrink tolerance, if the number of good agents in a GWO iter-
ation is greater than or equal to the total number of agents
times s and the elements in the vector a are less than or
equal to 1, the vectors and parameters are not updated. For
the iterations with 10 agents and s= 0.9, if the number of
good agents in a GWO iteration is greater than or equal to
9 and the elements in a are less than or equal to 1, then A,
a, C, Xα, Xβ, and Xδ are not updated. It means that we do
not have to shrink the searching area anymore and sample
the points by using the current intermediate vectors.
Figure 1 shows a comparison between the proposed updating
scheme (top) and the original GWO (bottom). In the figure,
dots (•) and crosses (X) represent good points and bad
points, respectively. With the original updating scheme,
points converge toward a point while points in the upper
figure do not.

The second modification for the updating scheme is about
Eq. (7). The updated agent from Eq. (7) can violate the lower
bound or upper bound of design variables. In the original
GWO, for each dimension, if the value of the element is
less than the lower bound, it is set as xLi . If it is greater
than the upper bound, the value is set as xUi . That means
that many borderline points are sampled when we use the
original updating scheme. In the modification, we accepted
the updated agent only if it is in the boundary of the design
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variables. For each dimension, corresponding elements of the
vectors r1 and r2 in Eqs. (3) and (4) are re-evaluated until the
updated value does not violate the bounds. Checking the fea-
sibility of design variables is computationally much cheaper
than evaluating fitness which includes performance func-
tions. The algorithm with modified updating scheme is pre-
sented in Algorithm 3.

Algorithm 3 GWO for design exploration 2 (GWODE2)

Input: Number of search agents (n), maximum number of GWO iterations
(tmax), shrink tolerance (s)
procedure GWODE2 (n, tmax,s)

G ← ∅, B ← ∅
Initialize Xi(1) (i = 1, 2, . . . , n)
Calculate the fitness for each Xi(1)
Xα ← the best agent
Xβ ← the second best agent
Xδ ← the third best agent
t ← 1
while t ≤ tmax do
for i = 1,… , n do
if TL ≤ R(Xi(t)) ≤ TU then
G ← G ∪ {Xi(t)}
g ← g+ 1

else
B ← B ∪ {Xi(t)}

end if
while Xi(t + 1) ≤ xU or Xi(t + 1) ≥ xL do
Update the agent as in Eq. (7)

end while
Calculate the fitness for Xi(t + 1)

end for
if g < n × s OR a > 1 then

Update a, A, and C
Update Xα, Xβ , and Xδ

end if
t ← t + 1
end while
return G, B

end procedure

(3) Finding different target points by k-means clustering.
For the first optimization problem, the target range defined

by TL and TU is used for a fitness function as an initializa-
tion. From the initialization process, we can get a set of
good points, G. Points in G are clustered by k-means cluster-
ing and the centers of the clusters become the targets for the
next iteration. Since the centers of the clusters exist in design
space, we need to evaluate the responses for the centers, and
the responses are set as target points.

K-means clustering is a data mining method that partitions
observations into k clusters [26]. It evaluates the sum of
point-to-centroid distances for each cluster and minimizes
the sum of the evaluations. In order to validate the result
from k-means clustering, a silhouette method is used [27].
Since the performance of the clustering from the k-means
method depends on k, the number of clusters, the algorithm
tries 1 to kmax clusters and evaluates the silhouette mean to
find the best cluster. The target point, T, is defined as the
centers of the best clusters fromk-means clustering and the sil-
houette method.

Algorithm 4 GWOMTE

Input: Number of search agents (n), maximum number of GWO iterations
(tmax), shrink tolerance (s), maximum number of explored target points
(pmax), target convergence tolerance (c), maximum number of clusters (kmax)
procedure GWOMTE (n, tmax, s, pmax, c, kmax)

Define the fitness using TL and TL as in Eq. (9)
[G,B] ←GWODE2(n, tmax, s)
l ← 1
p ← 2
while

∑
j

|Tx
·j (l− 1) − Tx

·j (l)|
| xU − xL| ≥ c do

for k = 1, . . . , kmax do
[ Ik, Tk] ←KMEANS(G, k)
msk ←mean(SILHOUETTE(G, Ik))
msmax(l) ← argmaxk{msk}

end for
Tx(l) ← Tmsmax(l)

Define TLIST(l) as responses of Tx(l)
for j = 1, . . . ,msmax(l) do
if p ≥ pmax then
Stop GWOMTE

end if
Get the fitness using TLIST

·j (l) as in Eq. (10)
[G,B] ← [G,B] ∪GWODE2(n, tmax, s)
p ← p+ 1

end for
l ← l+ 1

end while
return G, B

end procedure

With the modifications, the proposed algorithm, GWO for multi-
ple target exploration (GWOMTE), is presented in Algorithm 4.
There are six parameters in the algorithm. The number of search
agents (n) and the maximum number of GWO iterations (tmax) are
parameters for the original GWO. Shrink tolerance (s) defines the
exploration and exploitation in the updating scheme. The
maximum number of explored target points (pmax) and target

Fig. 1 The figures on top and bottom show intermediate points
from the proposed method (top) and GWO (bottom), respectively
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convergence tolerance (c) are needed for stopping criteria. Also, the
parameter pmax defines themaximum time resource that is allowed to
designers becausewe can calculate themaximumnumber of function
evaluations. Since the algorithm evaluates performance functions n×
tmax number of times for every target point, n× tmax × pmax is the
maximum number of function evaluations. Lastly, the maximum
number of clusters (kmax) determines a quality of k-means clustering.
The algorithm starts with GWODE2 where the fitness function is

defined with the target range. The set of good design points is clus-
tered by k-means clustering with different numbers of clusters, k,
and the silhouette method is used to find the best cluster among
kmax different clustering results. The centers of the best clusters are
defined as target points. The target list of the lth iteration is defined
by evaluating all the centers with the performance functions, R(x).
For each target point, it defines the fitness function and GWODE2
is applied. There are two different stopping criteria. If the centers
of clusters converge to certain points, the algorithm stops. The test
of convergence is performed only if the number of clusters is the
same as the number of clusters in the previous iteration. Also, if
the number of target points that are used to define fitness functions
is greater than pmax, it stops.

3 Numerical Experiments
Numerical experiments are performed to test the proposed

methods. Two different problems are tested in this section. The
first problem is a two-dimensional problem with polynomial perfor-
mance functions. The good points are displayed in graphs to see the
spread of the solutions. The second problem is a two-degree-of-
freedom bicycle model. There are seven design variables and five
performance functions. For performance functions, closed-form
expressions are used.
The purpose of the numerical evaluation is verifying GWOMTE

and comparing with GWODE1 by measuring the quality of good
points in the set G. To evaluate the quality of points, four metrics
are used: the rate of good designs (rg), the rate of unique designs
(ru), spread (E0), and spread of standardized data (E0,std). rg
counts the number of good designs which is easily obtained from
the cardinality of G. For ru, unique designs are defined as good
design points that are not close to other good design points. In
this numerical experiment, if the two points are in the same hyper-
cube where its minimum distance between two vertices is 0.1, they
are considered as the same points. That means we ignore all the
digits after the second decimal number and remove redundant
points. Spread is proposed by Willerton [28]. It measures the size
of metric spaces. The spread E0(X ) is defined by as follows:

E0(Y) =
∑
y∈Y

1∑
y′∈Y e

−d(y,y′) (11)

In the definition, Y is a finite set and d is a metric. In this case, we
use Euclidean distance as the metric. According to the paper by
Willerton, the spread has the following properties [28]:

– 1≤E0(Y )≤ |Y|
– E0(tY) is increasing in t
– E0(tY)→ 1 as t→ 0
– E0(tY)→ |Y| as t→∞
– E0(Y )≤ ediam(Y )

As it is shown in the first property, the lower bound of spread is 1
and the upper bound depends on the number of points in Y. E0,std

also uses Eq. (11), but the good design points are standardized
with xL and xU.
The numerical experiment starts with solving the problem using

GWOMTE. With being solved by GWOMTE, we can get the
number of explored target points, p*, that shows how many times
GWODE2 is used for GWOMTE. After GWOMTE is tested, we
run GWODE1 for p* times. By doing so, we evaluate the same
number of points for both GWOMTE and GWODE1, which is
equal to (n× tmax × p*). For the results from GWOMTE and

GWODE1, four metrics (rg, ru, E0, and E0,std) are calculated to
compare the quality of solutions.

3.1 Problem 1: Two-Dimensional Problem. A simple two-
dimensional problem is tested to visualize the set of good
designs. The solution space of the problem is as follows:

F 1 = {x | TL
1 ≤ R1(x1, x2) ≤ TU

1 ,

TL
2 ≤ R2(x1, x2) ≤ TU

2 ,

TL
3 ≤ R3(x1, x2) ≤ TU

3 ,

xL1 ≤ x1 ≤ xU1 ,

xL2 ≤ x2 ≤ xU2 }

where R1(x1, x2) = −x1 + x2

R2(x1, x2) = 2x21 + x2

R3(x1, x2) = x1(x1 − 3)(x1 − 6) + x2

(12)

There are two design variables, x1 and x2, and three performance
functions, R1, R2, and R3. Performance functions are polynomial
functions which are linear, quadratic, and cubic. For the numerical
experiments, the boundary of the design variables is fixed as xL1 = 0,
xU1 = 10, xL2 = 0, and xU2 = 150. Three different target ranges are
tested, and the problems with different target ranges are denoted
as P1A, P1B, and P1C. The target range for each problem is
shown in Eq. (13).
The solution space of P1A has one connected set, P1B has two

disconnected sets, and P1C has three disconnected sets. We set
the parameters as n= 10, tmax= 20, pmax= 500, c= 2 × 10−3, and
kmax= 10. For the shrink tolerance s, 11 different values are
tested (0, 0.1, 0.2, … , 1). The results are summarized in Table 1.
For each shrink tolerance, we tested 100 different random seeds
and the results shown in the table are the averages of 100 outputs.

P1A: TL
1 = 10, TU

1 = 30, TL
2 = 20, TU

2 = 50,

TL
3 = 20, TU

3 = 35

P1B: TL
1 = 10, TU

1 = 25, TL
2 = 20, TU

2 = 120,

TL
3 = 20, TU

3 = 35

P1C: TL
1 = 20, TU

1 = 25, TL
2 = 20, TU

2 = 120,

TL
3 = 25, TU

3 = 30

(13)

Table 1 shows comparisons between GWOMTE and GWODE1.
The bold values in the table represent the better performance
between the two methods. In the results, both GWOMTE and
GWODE1 performed better than brute-force search. ru values of
brute-force search for P1A, P1B, and P1C were 0.0245, 0.0286,
and 0.0092, respectively. For the parameter s, as it decreased, rg
and ru decreased but E0 increased. As s gets close to 0, the points
spread more from the target point rather than converge. That
means smaller s sacrifices the probability of getting good points
for the spread of the points. In terms of the spread metrics (E0 and
E0,std), GWODE1 was better than GWOMTE. We think this is
because of the stopping criteria of GWOMTE. Since the algorithm
stops when the target points are not much changed, the points are
sampled toward similar target points at the last stage of the algorithm.
About the ru, it is the highest when s= 0.8 for all the cases. For these
problems, 0.8 is the best value for swhere the algorithm obtains addi-
tional good points by using redundant points.
Figures 2 and 3 show a good example of GWOMTE. Only good

points are shown in the figures. Each marker in the figure represents
the number of the cluster. For example, in the upper figure in Fig. 2,
there are two different markers (“1” and “2”) which tell the cluster
number that the design points belongs to. The plus signs (+) repre-
sent the centers of clusters. Figure 2 shows the first and second
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Table 1 Result of the two-dimensional problem

GWOMTE GWODE1

s p rg ru E0 E0,std rg ru E0 E0,std

P1A 1 9.96 0.6033 0.4212 10.7690 1.0843 0.5173 0.4028 12.8870 1.1123
0.9 10.43 0.5986 0.4376 10.9580 1.0847 0.5170 0.3998 12.8700 1.1112
0.8 10.57 0.5851 0.4426 11.2490 1.0873 0.5171 0.4002 12.9230 1.1116
0.7 10.60 0.5688 0.4385 11.3810 1.0860 0.5166 0.3996 12.8840 1.1108
0.6 10.68 0.5552 0.4357 11.4440 1.0854 0.5154 0.3980 12.8040 1.1107
0.5 11.23 0.5406 0.4231 11.4870 1.0861 0.5170 0.3962 12.9390 1.1115
0.4 11.04 0.5311 0.4216 11.5270 1.0859 0.5169 0.3968 12.8400 1.1108
0.3 11.19 0.5290 0.4221 11.6060 1.0868 0.5169 0.3970 12.8840 1.1111
0.2 11.50 0.5289 0.4196 11.6220 1.0862 0.5177 0.3949 12.9830 1.1118
0.1 11.21 0.5279 0.4211 11.6080 1.0861 0.5173 0.3969 12.9410 1.1113
0 11.10 0.5294 0.4225 11.5940 1.0855 0.5165 0.3967 12.9340 1.1111

P1B 1 11.93 0.4768 0.3491 13.1300 1.1694 0.4005 0.3253 14.1570 1.1683
0.9 12.11 0.4666 0.3583 13.3930 1.1729 0.4004 0.3245 14.1680 1.1680
0.8 11.93 0.4624 0.3641 13.3880 1.1708 0.4016 0.3262 14.1160 1.1667
0.7 11.83 0.4458 0.3569 13.6270 1.1722 0.3981 0.3236 14.1870 1.1690
0.6 12.13 0.4383 0.3560 13.6970 1.1706 0.3995 0.3238 14.1730 1.1678
0.5 13.04 0.4227 0.3443 14.0790 1.1754 0.4008 0.3217 14.2070 1.1660
0.4 12.5 0.4129 0.3436 14.1100 1.1706 0.4022 0.3251 14.2210 1.1677
0.3 12.41 0.4012 0.3350 14.2840 1.1690 0.4008 0.3248 14.1350 1.1661
0.2 12.62 0.3935 0.3279 14.3310 1.1667 0.4034 0.3261 14.2990 1.1680
0.1 13.01 0.3855 0.3224 14.5030 1.1618 0.4024 0.3240 14.1770 1.1657
0 12.46 0.3799 0.3183 14.2310 1.1515 0.4023 0.3257 14.2550 1.1663

P1C 1 10.12 0.2721 0.1850 6.2002 1.1404 0.2401 0.1733 7.3907 1.1661
0.9 9.88 0.2713 0.1877 6.2145 1.1396 0.2403 0.1747 7.4013 1.1664
0.8 9.79 0.2665 0.1886 6.1024 1.1321 0.2382 0.1736 7.3210 1.1641
0.7 9.59 0.2595 0.1873 6.0083 1.1273 0.2395 0.1755 7.3266 1.1643
0.6 9.96 0.2491 0.1828 6.1818 1.1328 0.2363 0.1742 7.3644 1.1641
0.5 10.69 0.2402 0.1775 6.4258 1.1416 0.2400 0.1724 7.4454 1.1661
0.4 10.67 0.2218 0.1693 6.6037 1.1468 0.2423 0.1726 7.4642 1.1680
0.3 11.02 0.1994 0.1560 6.7211 1.1486 0.2415 0.1719 7.4225 1.1650
0.2 10.76 0.1795 0.1441 6.6990 1.1454 0.2416 0.1727 7.4960 1.1663
0.1 11.74 0.1570 0.1283 6.9472 1.1510 0.2415 0.1701 7.5599 1.1682
0 11.14 0.1394 0.1171 6.8922 1.1448 0.2403 0.1707 7.4629 1.1666

Fig. 2 A good example of GWOMTE for P1B (the first and
second iterations)

Fig. 3 A good example of GWOMTE for P1B (the third and fourth
iterations)
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iterations of the algorithm and Fig. 3 shows the third and fourth iter-
ations. The algorithm did not find any point in the right set of the
solution space in the first iteration. In the second iteration, one solu-
tion is found in the right set. However, both centers of clusters are in
the left set. As more design points are sampled in the third iteration,
one of the centers moved to the right set. In the fourth iteration, the
algorithm started to find good design points in the right set.

3.2 Problem 2: Automotive Vehicle Design

3.2.1 Problem Description: Bicycle Model. In the bicycle
model, lateral and yaw dynamics formulate vehicle motions.
Lateral and yaw dynamics are shown in Eq. (14) and Eq. (15),
respectively. Also, the vehicle geometry is shown in Fig. 4.

may = Fyf + Fyr (14)

Izzṙ =
∑

Mz (15)

In Eq. (14),m represents the mass of a vehicle, and Fyf and Fyr are
the tire forces at the front and rear axles. In Eq. (15), Izz is the yaw
moment of inertia, and Mz is the yaw moment due to tire forces.
Both equations can be formulated with the slip angle and cornering
stiffness. The front and rear cornering stiffness are denoted as Cαfs

and Cαrs, respectively. The front and rear slip angle are defined as
follows:

αf = δt −
V + ar

U
(16)

αr =
−V + br

U
(17)

In Eqs. (16) and (17), U is the longitudinal velocity, V is the
lateral velocity, and r represents the yaw rate. By using the corner-
ing stiffness and slip angle, lateral and yaw dynamics are formulated
as follows:

Fyf + Fyr = Cαf αf + Cαrαr (18)

∑
Mz = aFf − bFr = aCαf αf + bCαrαr (19)

Here, Cαf = 2Cαf s(180/π) and Cαr = 2Cαf r(180/π). The final
forms of the dynamic equations are obtained by setting the first
derivatives of the state variables as 0. In the model, U= 80 and
g= 9.82. The formulations are following.

V̇ = −
(Cαf + Cαr )

m

V

U
−
(Cαf a + Cαr b + mU2)

m

r

U
+
Cαf

m
δt (20)

ṙ = −
(aCαf − bCαr )

Izz

V

U
−
(a2Cαf + b2Cαr )

Izz

r

U
+
aCαf

Izz
δt (21)

3.2.2 Numerical Test. In this case study, seven design vari-
ables and five performance functions are used. Table 2 summarizes
the design variables and performance functions. The solution space
of the problem is following.

F 2 = {x | 50.3981 ≤ R1(x) ≤ 59.2831,

19.5470 ≤ R2(x) ≤ 22.9930,

− 4.4704 ≤ R3(x) ≤ −3.1263,
− 0.1598 ≤ R4(x) ≤ 0.2881,

1.1144 ≤ R5(x) ≤ 1.2277,

2250 ≤ x1 ≤ 2750,

1350 ≤ x2 ≤ 1650,

49.5 ≤ x3 ≤ 60.5,

2250 ≤ x4 ≤ 2750,

1080 ≤ x5 ≤ 1320,

900 ≤ x6 ≤ 1100,

14.4 ≤ x7 ≤ 17.6}

where R1(x) =
U

(a + b) −
x2(aCαf − bCαr )U

2

(a + b)Cαf Cαr

100
x7

R2(x) =
U2

(a + b) −
x2(aCαf − bCαr )U

2

(a + b)Cαf Cαr

100
x7

π

180

R3(x) =
b(a + b)Cαf Cαr − x2U2aCαf

x2x4U2ω2
n

100
x7

R4(x) =
(
Wf

Cαf

−
Wr

Cαr

)
180
π

R5(x) =
1
2π

ωn

(22)

We set the parameters as n= 20, tmax= 40, pmax= 500, c= 5 ×
10−3, and kmax= 10. For the shrink tolerance s, 11 different
values are tested (0, 0.1, 0.2,… , 1). For each shrink tolerance,
we tested 20 different random seeds and the results shown in
Table 3 are the averages of the outputs.
The results are similar to the results of the two-dimensional

problem. rg and ru decreased as s got close to 0. However, ru of
GWODE1 was worse than ru of brute-force search, which was
0.0698, while ru of GWOMTE was better than ru of brute-force
search. Also, E0 of GWOMTE was better than that of GWODE1.
The spread metric, E0, is not monotonically increasing as the
number of points increases, but the maximum value that E0 can get
increases. As the number of good points for GWOMTE almost
doubled that of GWODE1, E0 was much higher for GWOMTE.
The authors thought GWOMTE deserved the advantage because
the algorithm got more good design points than GWODE1 from
the same number of evaluations.

4 Discussion
The goal of the proposed methods is finding good and distin-

guishable design points as many as possible in a limited numberFig. 4 A bicycle model
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of evaluations. The methods return a set of good designs, which is
included in the solution space and a set of bad designs where the
elements violate the target range. In the numerical experiments,
the results of rg and ru were good for the size of the solution
space. The high rg values are meaningful for computationally
expensive problems. Because of the complexity, the sampling or
the design exploration process should be efficient, and the high rg
means the high probability of sampling a good design point. In
terms of the spread metric, E0, the results are different from ru in
the two-dimensional problems. It is because, for two different
design points, E0 increases if the distance between two points
increases while ru does not increase once they are not very close
enough. ru is a good metric for measuring the quality of distinguish-
able design points, but it is subjective because the user should define
the value of the “close-enough distance.”
In the experiment, GWOMTE performed well for the tested prob-

lems. Especially, for the two-dimensional problem, it performed
much better than brute-force search. For the bicycle model, it still
outperformed brute-force search, but the margin was smaller than
the low-dimensional problem. Since the original GWO works
best for benchmark problems and low-dimensional case-studies
[29], further improvements and experiments should be done for
high-dimensional problems. Also, we can use a different type of

derivative-free method other than GWO, such as PSO or GA.
GWO is used for the paper because we know how many evaluations
are going to be done by the algorithm because of the stopping
criterion of GWO. However, any other derivative-free method
can be applied to this framework which is the concept of design
exploration and setting the target points by k-means clustering.
As the modified updating schemes are introduced specifically for
GWO, the updating schemes for the method should be changed
accordingly.
In the clustering stage of the proposed method, k-means and the

silhouette method are used as they are the widely used clustering
method, easy to implement, and efficient in time. However,
k-means converges to a local minimum only (it converges to the
global minimum in certain conditions [30]). In our method, we
cannot guarantee or provide proof of convergence of the clustering
stage. Instead, we added pmax, the maximum number of explored
target points, to use it for an additional stopping criterion. As one
of the future works, we can fine-tune the proposed method by apply-
ing other clustering methods instead of k-means clustering. We can
use the x-means clustering method [31], which is an extension of
k-means clustering, where an algorithm automatically finds the
number of clusters. By using x-means clustering, we do not have
to use the silhouette method to determine the best number of

Table 2 Design variables and performance functions

Symbol Description Unit

Design variables x1 Wheelbase mm
x2 Total vehicle mass kg
x3 Weight distribution ratio %
x4 Yaw moment of inertia kg m2

x5 Front cornering stiffness N/deg
x6 Rear cornering stiffness N/deg
x7 Steering gear ratio —

Performance functions R1 Steady-state yaw rate gain 1/s
R2 Steady-state lateral acceleration gain (m/s2)/deg
R3 Steady-state side slip —
R4 Understeer gradient deg/g
R5 Yaw rate natural frequency Hz

Intermediate variables L x1/1000 m
a L(1− x3/100) m
b L− a m
Wf x2gb/L N
Wr x2g−Wf N
Cαf 2x5(180/π) N/rad
Cαr 2x6(180/π) N/rad

ωn

��������������������������������������������������
1

x2x4U2 ((a + b)2Cαf Cαr + x2U2( − aCαf + bCαr ))
√

rad/s

Parameters U Longitudinal velocity kph
g Acceleration of gravity m/s2

Table 3 Result of the bicycle model

GWOMTE GWODE1

s p rg ru E0 E0,std rg ru E0 E0,std

1 102.50 0.1049 0.1049 2146.1 2.2472 0.0622 0.0613 1243.7 3.0293
0.9 102.65 0.1051 0.1051 2153.2 2.2452 0.0623 0.0613 1245.7 3.0306
0.8 100.15 0.1049 0.1049 2101.5 2.2451 0.0623 0.0614 1218.2 3.0272
0.7 92.95 0.1049 0.1049 1951.3 2.2448 0.0626 0.0617 1133.3 3.0302
0.6 98.55 0.1040 0.1040 2051.0 2.2424 0.0627 0.0618 1203.3 3.0310
0.5 84.70 0.1036 0.1036 1755.6 2.2451 0.0625 0.0616 1031.0 3.0306
0.4 96.50 0.1036 0.1036 1997.2 2.2521 0.0628 0.0619 1182.2 3.0309
0.3 99.70 0.1016 0.1016 2022.1 2.2570 0.0629 0.0620 1215.9 3.0308
0.2 95.30 0.0949 0.0949 1806.4 2.2966 0.0625 0.0616 1159.8 3.0343
0.1 107.15 0.0840 0.0840 1805.5 2.3568 0.0628 0.0619 1304.2 3.0392
0 113.20 0.0770 0.0770 1744.6 2.4060 0.0626 0.0617 1379.5 3.0339
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clusters. However, we still need to figure out if the clustering stage
guarantees the optimality. Furthermore, we can use the time-series
clustering method [32]. It is used when a series of datasets is given.
The outputs of proposed methods are two finite sets rather than

infinite sets or feasible regions. If designers want to have an approx-
imated solution space, the outputs, G and B, can be used. By utiliz-
ing machine learning and data mining such as support vector
machine [33], designers can perform a binary classification and
build a prediction model that discriminate between good and bad
designs. Since proposed methods sample the points near boundaries
of the solution space, it will be effective to apply binary classifica-
tion techniques.
Also, estimating the solution space or obtaining the finite set of

good design points can be useful rather than having the best
design by an optimization problem. For example, solution spaces
from different target ranges can be combined to build a better
design. For product family design, solution spaces from the same
performance functions and different target ranges are sets of candi-
date solutions [19]. Designers can maximize the number of shared
components by choosing design points that are in intersections of
solution spaces.

5 Conclusion
In this paper, we introduced methods that can be used in the

early stage of design processes. As target points explore the
target range for performance functions, the objective function of
the optimization is updated. The optimization problems are used
as a means of sampling design points in the solution space. We
modified the GWO for the sampling process, and it is used as a
design exploration process. Target points are determined by clus-
tering so that the centers of the clusters represent disconnected
sets of the solution space. With the proposed methods, designers
can obtain finite sets of design points, and those can be used to
estimate solution space or design multiple products that satisfy dif-
ferent target ranges. Therefore, the proposed algorithms enable
designers to explore design space and help them understand the
solution space.
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Nomenclature
c = target convergence tolerance
n = number of search agents
s = shrink tolerance
B = set of bad designs
G = set of good designs
M = number of performance functions
N = number of design variables

kmax = maximum number of clusters
pmax = maximum number of explored target points

rg = rate of good designs
ru = rate of unique designs

tmax = maximum number of GWO iterations
E0 = spread

E0,std = spread of standardized data
Rj(x) = performance function (j= 1,… , M)

Xi = position vector of ith agent
xL, xU ∈ RN = boundary of design variables
TL, TU ∈ RM = target range of responses form R(x)

TLIST(l) = list of target points at lth iteration
x ∈ RN = design variables
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