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ABSTRACT
Due to recent technological advancements, automation and autonomous solutions are gaining increas-
ing popularity. Yet, a lack of in-depth investigations is noticed on the potential environmental benefits 
and economic repercussions of implementing autonomous systems. The present study aims to fill part of 
this gap by quantifying the environmental and economic sustainability of a robotic lawn mower, in 
comparison with human-operated counterparts. Combining life cycle assessment and life cycle costing 
methodologies, and by defining adequate functional units, building simulation models, and collecting 
life cycle inventory data, a systematic comparative study between autonomous and conventional lawn 
mowers is performed on their environmental and economic impacts. Through this multi-indicator 
analysis, environmental and economic trade-offs between the autonomous and conventional mowing 
solutions are quantitatively discussed for key relevant usage scenarios, from mowing an average 
residential yard to maintaining larger fields like a football stadium or a schoolyard. Concretely, sensitivity 
analyses on key parameters influencing the performance of the autonomous mower have been con-
ducted to evaluate the environmental and economic benefits of an augmented robotic mower. While 
optimising the path planning of the current robotic mower would lead to the most substantial savings, 
improvements on the battery performance, cutting width, and speed of the autonomous solution appear 
as other promising areas for future work.
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1. INTRODUCTION

1.1. CONTEXT AND MOTIVATIONS

Automation and autonomous solutions are increasingly con-
sidered as promising and timely solutions to enhance the 
safety, reliability, and productivity of human-operated tasks. 
Automation is a set of human-defined functions performed by 
a robot or piece of equipment. Autonomy is a state in which 
a robot or piece of equipment operates independently, without 
explicit instructions from a human. For the Society of 
Automotive Engineers (SAE International 2016), there are 
five levels of autonomy from Level 0 for the human driver 
doing everything (all manned vehicles), to Level 4 being an 
automated system that can perform all driving tasks (no local 
supervision, remote supervision or artificial intelligence) 
under all conditions that a human driver could perform, 
through intermediate levels (manned back-up, or in-field 
supervision of unmanned vehicles). A large number of indus-
tries are implementing state-of-the-art automated systems, 
such as: automotive industry, agriculture industry, aerospace 
industry, defence industry, mining industry, energy industry, 
or food industry (Productivity Inc 2019). A review of existing 
autonomous systems in several industries has emphasised that 
the sustainability and related environmental impact of such 

autonomous systems are barely studied and quantified in 
comparison to conventional human-operated systems, except 
in the automotive industry with an increased focus on con-
nected and autonomous vehicles. The potential promising 
benefits of automation – which still need to be validated 
quantitatively with sound and transparent studies – include: 
(i) a faster return on investment, a priori due to lower operat-
ing costs, reduced lead times, and increased output; and (ii), 
a smaller environmental footprint, by streamlining equipment 
and processes, reducing scrap and using less energy. Despite 
promises of increased efficiency (Kurilova-Palisaitiene et al. 
2017; Bahri and Ouled Amor 2019), it is not clear whether 
the paradigm shift towards autonomous systems will change 
‘how we decide when our self-interest (e.g., comfort) is pitted 
against the collective interest (e.g., environment)’ (De Melo, 
Marsella, and Gratch 2019). In fact, Nouzil et al. (2017) 
reviewed the sustainable impacts of automation on society 
and qualitatively discussed how automation could affect our 
society, by considering four dimensions: ecology, economics, 
politics, and culture. When it comes to the design and devel-
opment of autonomous technical solutions, it has been noticed 
that most studies do not comprehensively consider the socie-
tal, environmental, and economic impacts of automation. 
Particularly, a lack of life cycle analysis on automation 
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processes and autonomous systems has been observed. Further 
research is therefore needed to study the environmental effect 
of automation technologies through life cycle assessment to 
better understand their ecological footprint.

1.2. RESEARCH APPROACH, OBJECTIVES AND EXPECTED 
CONTRIBUTIONS

In this line, this research initiates the measurement of the 
environmental impacts of such new automated technologies 
in other sectors than the automotive industry, by wondering 
how automation could be used to build more sustainable 
machines in the gardening industry. Through the case study 
on a robotic lawn mower, put in comparison with human- 
operated mowers, the questions that this study sets out to 
answer are: (i) whether the automation of lawn service is 
making sense environmentally and economically, and (ii) 
under which conditions it could provide further sustainable 
benefits. Therefore, the present research work focuses on the 
contributions of autonomous systems to sustainability, by 
questioning here the relevance, implication, and applicability 
for lawn mowing equipment. After a literature survey and 
critical analysis of existing autonomous solutions, including 
a review of state-of-the-art examples (section 2), an original 
and in-depth case study is conducted to assess and compare 
the sustainability performance of autonomous mowers with 
their human-driven counterparts, as well as to discuss the 
conditions (e.g., enhanced design, augmented features, appro-
priate use modes) for further economic profitability and envir-
onmental savings. To do so, comparative life cycle assessment 
(LCA) and life cycle costing (LCC) are deployed on autono-
mous solutions and their human-operated counterparts (all 
details being presented in section 3). Interestingly, the impact 
of different usage scenarios for the autonomous solution is 
compared to conventional lawn mowing activities (sub- 
sections 4.1 and 4.2). Beyond the technical aspect of this 
study and interpretation of the results that might interest 
original equipment manufacturers, consumers or policy- 
makers, insights from this applied study also aim to bring 
new elements of discussion to the proper comparative envir-
onmental assessment between autonomous systems and tradi-
tional ones. As such, the present piece of research brings new 
relevant data related to the use phase of autonomous lawn 
mower, with their current limitations and areas of improve-
ments, as well as sheds fresh lights on the life cycle assessment 
of autonomous solutions to help design and develop more- 
sustainable products (sub-section 4.3).

2. LITERATURE SURVEY

To identify and analyse relevant prior works on this topic, 
a screening of the literature available on autonomous systems 
through the light of sustainability has been conducted using 
a combination of the following keywords in the main database 
for research papers:

● Keywords: autonomy, autonomous, automation, sys-
tems, equipment, sustainability, environmental, impact, 
life cycle, assessment, evaluation, performance.

● Database: Google Scholar, Scopus, Science Direct, for 
academic literature; and Google search, for grey literature 
including industrial and technical reports.

A search of this literature revealed that recent studies have 
begun to explore quantitatively the potential energy and 
greenhouse gas emission impacts of connected and auto-
mated vehicles (CAVs) (Gawron et al. 2018; Kopelias et al. 
2020). Gawron et al. (2018) reported the results of 
a comparative life cycle assessment (LCA) between a CAV 
and a conventional internal combustion engine vehicle. The 
functional unit defined for conducting this comparative 
LCA was as follows: ‘a passenger car with a service life of 
160,000 miles traveled over 12 years’. This study particu-
larly explored the trade-offs between the increased envir-
onmental impacts from adding autonomous vehicle 
equipment and the expected gains in driving efficiency. 
Indeed, to be operational, these CAVs are required to be 
equipped with multiple cameras, sonar, radar, LiDAR, 
a GPS navigation system, a computer, and support struc-
tures. Their findings showed that the sensing and comput-
ing subsystems in CAVs could increase a vehicle’s energy 
use and greenhouse gas emissions (GHG) from 3 to 20 per-
cent due to increases in power consumption, weight, and 
aerodynamic drag. Yet, when potential operational benefits 
of such autonomous vehicles are included (including, e.g., 
eco-driving, platooning, and intersection connectivity), the 
net result can be up to a 9% reduction in energy use and 
GHG emissions in the base case scenario (Gawron et al. 
2018). Kopelias et al. (2020) provided a review of the 
studies estimating the potential environmental impacts 
induced by the implementation of these CAVs in the mar-
ket and in road traffic. Eleven factors affecting the environ-
mental performance of the CAVs were identified and 
categorised based on whether they are related to the vehi-
cle, the road network, or the user.

While most research on the sustainable performance of 
autonomous systems has been carried out on CAVs, the use 
of autonomous solutions in other sectors has not been inves-
tigated in any systematic way. Dusik et al. (2019) stated that 
‘the uptake of automation is typically supported through 
implicit public policies that are not subject to formal environ-
mental assessments. In the absence of rigorous studies, it is 
often suggested that new technologies will help to solve the 
most urgent sustainability challenges.’ It becomes thus of the 
utmost importance to conduct scientifically sound studies that 
compare the impact of implementing autonomous systems 
from a sustainability standpoint. In their working paper, they 
explored the potential environmental impacts associated with 
the deployment of several key automation technologies over 
the next decade, including advanced industrial robotics and 
autonomous transports. As a first assessment, these automa-
tion technologies are qualitatively evaluated through best and 
worst-case scenarios (from significant positive impact to sig-
nificant adverse impact), and according to four complemen-
tary indicators (greenhouse gases (GHG) emissions, non-GHG 
emissions, resource use, and ecosystem use). The authors 
mentioned their working paper is just a first step that can 
serve as a primary relevant basis to foster in-depth analyses 
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and invited researchers for more refined studies in this area of 
sustainable automation (Dusik et al. 2019).

Indeed, further empirical investigations are needed into the 
environmental impacts of other growing and promising autono-
mous technologies, such as autonomous tractors in the agricul-
tural industry and intelligent robotics in smart home hubs (e.g., 
self-cleaning vacuums and autonomous mowers). In order to 
contribute to filling the gap on the lack of quantitative research 
addressing the potential environmental sustainability of autono-
mous systems, especially in the agriculture or gardening industry, 
a real-world case study is performed here on a robotic autono-
mous mower system. This study aims to quantitatively assess the 
sustainable performance of this autonomous solution, in terms of 
environmental saving and economic profit, of different usage 
scenarios compared to conventional lawn mowing activities. It 
is hoped that this research will generate fresh insights related to 
the sustainability impacts of implementing autonomous systems 
for agricultural and gardening activities, in comparison to the 
traditional use of human-driven systems.

3. MATERIALS AND METHODS

3.1. PRESENTATION OF THE SYSTEM: ROBOTIC LAWN 
MOWER

The farming and gardening industry is an interesting applica-
tion field for this study as it appears particularly relevant for 
the uptake and deployment of autonomous systems, consider-
ing the following elements. First, it is a labour-intensive indus-
try, with constrained time windows for the operations that 
need to be performed. Second, one can argue the implementa-
tion of such autonomous equipment can be easier and further 
operational in an off-road land area compared to the deploy-
ment of on-road autonomous vehicles, facing a lot of issues 
related to reliability and safety. The autonomous lawn mowing 
solution analysed in this study is a relatively small mower that 
constantly maintains a lawn according to a user-defined sche-
dule and a mowing zone that is dictated by a buried boundary 
wire. The movement or walk of this autonomous mower is 
currently dictated by ‘bouncing’ off the boundary wire at 
a random angle. It has the capability to find its own charging 
station (also included in the scope of the analysis), routinely 
charges itself, is completely weatherproof, and could thus 
operate on a 24 hour/7 day basis. The robotic mower consid-
eration here, in its current version, is already available on the 
European market (mainly in Germany, France, and the UK) at 
a price of 2665. USD And as autonomous mowers become 
more capable of cutting larger areas, it is estimated this market 
will grow. For instance, this autonomous solution is expected 
to enter the US market in 2020–2021.

3.2. METHODOLOGY: COMPARATIVE LIFE CYCLE 
ASSESSMENT (LCA) AND COSTING (LCC)

3.2.1. Goal and scope definition, functional unit, and 
system boundaries
Throughout this case study, life cycle assessment (LCA) and 
life cycle costing (LCC) methodologies are deployed to evalu-
ate the environmental impacts and total cost of ownership 

induced by mowing and maintaining a given field area, using 
either: a conventional riding mower (electric- and gasoline- 
powered one), a conventional pushing mower (electric- and 
gasoline-powered one), an autonomous electric mower (with 
current and realistic improved features), or a fleet of autono-
mous mowers (with current and realistic improved features), 
according to the size of the field to mow. The application of 
LCA methodology (ISO 14,040–44, International 
Organization for Standardization 2006b) is acknowledged to 
be a sound approach when it comes to comparing the envir-
onmental impact of product alternatives. LCC is the equivalent 
of LCA for the economic side. Combining LCA and LCC is 
particularly relevant for a more comprehensive sustainability 
analysis as it allows trade-off analysis between product alter-
natives (Guinee et al. 2011; Kwak and Kim 2013; Saidani et al. 
2019a). The primary phase of an LCA, namely the goal and 
scope definition (ISO 14,040, International Organization for 
Standardization 2006a), includes the identification of the pro-
duct system boundaries (which processes are to be included in 
the assessment) and the functional unit (that quantifies the 
functions or services delivered by the product system, to which 
all impacts will be scaled).

First, to make a sound comparison between these autono-
mous lawn mowers and conventional pushing or riding 
mowers, defining an appropriate functional unit (FU) is of 
the utmost importance. A well-defined FU enables scientifi-
cally sound (consistent and unbiased) comparison between 
different product systems and scenarios. FU is defined as 
a ‘quantified performance of a product system for use as 
a reference unit’ (ISO 14,040, International Organization for 
Standardization 2006a) and the ISO standard 14,044 
(International Organization for Standardization 2006b) 
recommends that the FU should be clearly defined and mea-
surable. Although no further guideline exists in the ISO stan-
dards to define a FU, numerous authors have proposed 
elements to structure FUs (Cooper 2003; Collado-Ruiz and 
Ostad-Ahmad-Ghorabi 2010). To reduce the variability and 
uncertainty around the choice of a FU, Cluzel, Leroy, and 
Yannou (2013) have proposed a more structured and unified 
framework, in accordance with the Joint Research Center (EC- 
European Commission 2010). On this basis, they identified 
that five key elements have to be included in the definition of 
a sound FU: (i) verb (functional analysis); (ii) what (form of 
the output); (iii) how much (magnitude); (iv) how well (per-
formance); (v) for how long (duration, time horizon of the 
analysis). Also, the functional unit has to be tied directly to the 
goals of the analysis and to the audience that the LCA is 
addressing (Caffrey and Veal 2013). The main objective of 
the present study is to evaluate the life cycle environmental 
impact and economic performance of autonomous mowers 
compared to human-operated ones. Furthermore, the chal-
lenge is how to compare adequately the sustainable perfor-
mance of a human-operated system with an autonomous one 
having the same primary function, but having non-negligible 
differences in terms of features and constraints, plus a certain 
degree of uncertainty related their usage scenarios.

The performance and constraints of the autonomous 
solution compared to the conventional one has thus to be 
investigated in order to help defining an appropriate FU. 
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According to technical experts, three specific constraints 
have to be considered for the autonomous mower: (i) 
a boundary wire constraint (i.e. how large of an area can 
be covered by the actual 350 metres of boundary wires); (ii) 
a battery constraint (how large of an area can the robotic 
mower cover given its 90 min work time and 33 cm/s 
speed); and, (iii) a time-window mowing constraint (how 
large of an area can robotic cover before a grass grow from 
a minimum to a maximum acceptable height, which is 
important information for larger area such as football 
field or golf course). These constraints were used to quan-
tify the workable area of robotic and to come up with 
realistic and feasible scenarios by deploying whether one 
robotic mower or a fleet of robotic mowers to accomplish 
the task(s) described in the FU. With this background, in 
order to compare these mowers on a technically equivalent 
basis, an example of a proper functional unit for the resi-
dential garden scenario (see use case #1.1 described in the 
next sub-section) is : ‘Maintaining the lawn of a 0.25 acre 
(1000 m2) garden (average US residential grass surface) 
under a height of 2.5 inches (6.35 cm) (recommended 
height for a cool-season grass), 26 weeks a year (mowing 
season), for 10 years (lifespan of the mowers) in the US’.

Eventually, according to the International Organization for 
Standardization (2006b) guidelines, the system boundaries 
have to be determined according to the functional unit and 
the available data. This is particularly important to ensure 
consistency in the comparative analysis between several pro-
duct systems (Simões et al., 2016). The system delimitations of 
this study, the indicators used, and the systems being com-
pared, are depicted in Figure 1, and summarised in Table 1.

3.2.2. Relevant use cases for the robotic mower and 
scenario-based LCA/LCC
The frames of the scenarios are also set up in the ‘goal and 
scope definition’ of an LCA (Pesonen et al. 2000). Cluzel 
et al. (2014) made a comprehensive review of scenario 

development and use in LCA. A scenario is defined here 
as ‘a description of a possible future situation relevant for 
specific LCA applications, based on specific assumptions 
about the future, and (when relevant) also including the 
presentation of the development from the present to the 
future’. On this basis, the analysis of explorative ‘what-if’ 
scenarios in LCA is suitable to ‘gain operational informa-
tion and to compare two or more alternatives, where the 
researcher can set defined hypotheses on the basis of exist-
ing data’ (Pesonen et al. 2000). For example, scenario 
analysis has been applied to a prospective LCA of transport 
systems, to assess the potential evolution of diverse tech-
nologies (Spielmann et al. 2004).

Currently, the first generations of autonomous mowers 
are mostly utilised in the European market. Residential 
properties in Europe have indeed been assumed to be 
appropriate for autonomous vehicle implementation 
because their average size is much smaller than 
a residential property in the United States. For instance, 
in Spain, the average lawn size is 1,507 square feet (0.035 
acre), and in the United States (US) the average lawn size is 
10,871 square feet (0.25 acre) (Home Advisor 2019). As 
mowers become more capable of cutting larger areas, the 
market will grow in the US. With this background, two 
scenarios are proposed as common use-cases of the robotic 
mower, each with its own defined functional unit.

Scenario 1 aims to capture the average residential lawn 
for the untapped US market (expected to enter the US 
market in 2021), while scenario 2 aims to capture large 
commercial lawns. The scope and purpose of comparative 
use case #1 are actually for the automated solution to 
replace or supplement the traditional walk-behind or riding 
lawnmower for a residential garden. As opposed to sce-
nario 2, only a single robotic mower is considered in 
scenario 1. In comparison, the scope of scenario 2 is for 
a fleet of autonomous mowers to replace or supplant sev-
eral riding lawnmowers for use in a large field for 

Figure 1. Scope and system boundaries of the comparative LCA and LCC.
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commercial or professional purposes. The FUs, system 
boundaries, and indicators used for these comparative 
LCA and LCC are listed in Table 1. The specifics are 
then defined for each sub-scenario in the results section.

3.3. SIMULATIONS TO ESTIMATE THE MOWING TIME: 
RANDOM VS. OPTIMISED PATH PLANNING

With the FUs and use cases defined, it is now of the utmost 
importance to calculate the time required by the autonomous 
mower to cover these different sizes of yard (i.e., to achieve the 
tasks described in the FUs). A good estimate of the electricity 
consumption of the robotic mower is indeed crucial to prop-
erly evaluate the environmental impact allocated to the use 
phase.

This first generation of autonomous mower uses a random- 
walk navigation system, meaning the mower turns a random 
angle between set bounds when it hits the boundary wired, 
buried in the yard, and delimitating the mowing area. 
Random-walk path planning is a common and practical solu-
tion for such mowers but presents limitations with larger 
fields, creating a potential limiting factor for commercial mar-
kets, due to overlaps (i.e., zones covered more than one time) 
induced by this random navigation mode. Mathematical mod-
els have been formulated to approximate the time performance 
of a random walk versus optimised path planning. Particularly, 
Matlab simulations have been performed to assess the perfor-
mance of the current generation of random-walk robotic, i.e. 
to quantify the time it takes to cover a certain percentage of the 
0.25-, 0.5-, 1.32- and 4-acre fields of the use cases described in 
the previous sub-section.

For example, as illustrated in Figure 2, given the default 
mowing speed of 33 cm/s and the 31 cm cutting blade of the 
robotic mower, simulations were first running for a 0.25-acre 
rectangular field with the following dimensions: 30 metres by 
33.3 metres. Figure 3 mapped out the visual results for this 
0.25-acre field random-walk simulation, following to the per-
centage of area covered. By these graphics, one can argue that 
90% or 95% completion is not acceptable for maintaining 
properly a professional field, or even a residential garden 

depending on the owner’s requirements. While it has been 
estimated it requires 14 hours to cover 99% of a homogeneous 
rectangular yard, the original equipment manufacturer recom-
mends using the robotic mower 20 hours to ensure sufficient 
coverage of more complex yard shapes.

The heat maps in Figure 4 highlights the overlap 
induced by this random walk. To reach 99% completion, 
it has been counted that 99.7% of the points were covered 
more than one time, and 81.9% of the points more than 
five times, which can already highlight a large room for 
improvement here for the autonomous solution. In the 
following sub-sections, potential environmental and eco-
nomic savings associated with an improved autonomous 
mower are quantified.

The graphs in Figure 5 are showing the use time of the 
random-walk robotic mower as a function of covered area for 
a 0.25- and 0.5-acre field. It is observed that using random walk 
alone, the time required to achieve a high percentage of cov-
ered area, from 90% to almost 100% completion, increases 
exponentially. Note that using optimal path planning, it 
would take 2.5 hours a week of actual mowing time to mow 
a 0.25-acre field, including a first 1 h30 of mowing, 1h20 of 
charging time, and a final 1h of mowing time. With one battery 
load (charging time of 80 minutes), the autonomous mower 
can mow up to 90 minutes. In comparison, the human time to 
mow a 0.25-acre garden is, on average, around 1 hour, using 
a push mower. And according to an industry benchmark on 
private lawn care services, it takes around 2.5 hours to mow 
a 4-acre field using a riding mower.

3.4. LIFE CYCLE INVENTORY (LCI): SUPPORTING DATA 
AND ASSUMPTIONS

Life cycle inventory (LCI) aims to identify and compile 
inputs (e.g., materials and energy) and outputs (e.g., emis-
sions) used to perform the environmental impact assess-
ment (see life cycle impact assessment (LCIA) in the 
following sub-section). The purpose of the study here is 
to assess and compare the environmental and economic 
performances of an autonomous robotic mower with the 

Table 1. Life cycle inventory.

Comparative 
LCA and LCC

Scenario #1 
Residential garden

Scenario #2 
Professional mowing activity

Autonomous 
solution

Use case #1.1: 1 robotic mower Use case #2.1: 1 to 2 robotic mower(s)
Use case #1.2: 1 robotic mower Use case #2.2: A fleet of robotic mowers

Human- 
operated 
solution

Use case #1.1: 1 gasoline-powered or 1 electricity-powered push (walk- 
behind) mower.

Use case #2.1: 1 gasoline-powered riding mower.

Use case #1.2: 1 gasoline-powered or 1 electricity-powered riding mower. Use case #2.2: 1 gasoline-powered or 1 electricity-powered riding 
mower.

Functional Unit Use case #1.1: Maintaining the lawn of a 0.25-acre garden under a height 
of 2.5 inches, 26 weeks a year (mowing season), for 10 years (lifespan) 
in the US.

Use case #2.1: Maintaining the lawn of a given professional football 
field of 1.32-acre at the standardised height, during the entire 
season of 26 weeks, for 10 years in the US.

Use case #1.2: Same as above with a 0.5-acre garden. Use case #2.2: Same as above with 4-acre schoolyard.
System 

boundaries 
(in-scope of the 

life cycle 
inventory)

Manufacture (bill of materials, material processing) 
Maintenance 
Usage (fuel or electricity consumption) 
Transportation

Life cycle impact 
assessment 
(LCIA)

Environmental indicators: GWP (CO2 eq.), ReCiPe (H) midpoints 
Economic indicator: Total cost of ownership (TCO, expressed in $)
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conventional types of human-operated lawn mowers, as 
listed in Table 1. As such, particular attention is paid to 
the use phase and the production of both the fuel and 
electricity that are used to run respectively the gasoline- 
and electric-powered lawn mowers. In addition to a high 
level of modelling details for the use and maintenance 
phases, solid and complete bills of materials are used to 
evaluate the environmental impact attributed to upstream 
materials extraction and manufacturing stages.

The manufacturing impact of the machine is composed of 
two parts – materials impact and processing impact. For the 
manufacturing impact of the autonomous mowers, the actual 
bill of materials provided by the original equipment manufac-
turer (OEM) is used for the robotic mower (note that 
a simplified and approximated version is given in Table 2, for 
confidential purposes). For the human-operated pushing and 
riding mowers (electric- or gasoline-powered ones), generic 

but well-detailed bill of materials are used, combining infor-
mation given by the OEM with date available in the literature 
(Lan and Liu 2010; Charif 2013). The materials impacts – 
through ReCiPe (H) Midpoints and GWP – are calculated 
using data from the ecoinvent database (see detailed in the 
next sub-section). Note that impacts from the infrastructure 
needed to support the manufacturing facilities of lawn mowers 
are beyond the scope of this study.

As illustrated in Figure 1, a well-to-wheels approach (Silva 
et al., 2006; Woo et al., 2017) is used to assess the impact related 
to the energy consumption of the different mowing systems. The 
production of fuel includes extraction, refining, and transporta-
tion to market activities. For electric equipment, the usage 
impact refers to the impact of the generation and transmission 
of electricity. Regarding the emissions and costs induced during 
the use phase, the gasoline fuel E10 ($2.6/gal), the average 
electricity mix, and the average electricity price ($0.12/kWh) at 

Figure 2. Simulation to estimate the time to mow a 0.25-acre yard, with a robotic mower.

Figure 3. Illustrated results of the simulation model: percentage of area covered.

Figure 4. Heat maps illustrating the overlaps of the random walk.
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the scale of the United States in 2019 are considered (EPA- 
Environmental Protection Agency 2019a). It has been estimated 
that the gasoline-powered riding mower consumes 0.5 gallon 
per hour, while the push mower consumes 0.25 litre per hour of 
mowing. Regarding the actual electricity consumption to 
recharge the lithium-ion battery (Stanford 2010; Battery 
University 2019), the charging losses and efficiencies considered, 
as illustrated in Figure 6, are the following: li-ion battery charge 
efficiency: 90%; electric motor efficiency: 60%; overall energy 
outlet to wheel efficiency per charging: 54%.

Under proper maintenance, the lifetime of push and ride-on 
is estimated to 10 years (Lan and Liu 2010; Charif 2013; Home 
Guides 2019). Manufacturers also estimate the predicted life-
span of robotic lawn mowers to 10 years (Hunker 2019). After 
discussion with a technical expert of the robotic solution, it is 
fair to assume that one robotic mower, with good maintenance, 
could perform and ensure the tasks required by the functional 
unit for scenario #1, while a fleet of robotic mowers would be 
required for larger fields (e.g., use case #2.2). Regarding the 
maintenance of the robotic solution, two items might need to 
be replaced over the lifetime of the robotic mower: (i) the 
lithium-ion battery, for which two rules are used to figure out 
when the battery should be replaced, according to the technical 
performance of lithium-ion batteries discussed in the literature 
(Stanford 2010; Battery University 2019; Popular Mechanics 
2019a, 2019b): whether (1) after a 5-year usage period, or (2) 
after 1,000 charge cycles, if reached before the 5-year time frame; 
(ii) the cutting blades for which a replacement is recommended 
every 500 hours of mowing. Appropriate maintenance opera-
tions and part replacement for the conventional mowers over 
their lifetimes are also taken into consideration (Popular 
Mechanics 2019c; Today’s Mower 2019). The tune-ups (includ-
ing filters, oils, and spare parts replacement) for the conven-
tional mowing systems are summarised in Table 2. Prices 
provided by the OEM, as well as average prices found on the 
main retailer of gardening equipment (Home Advisor 2019; The 
Lawn Mower Guy 2020) have been used for the LCC.

Note that the end-of-life stage is not considered within 
the scope of our analysis, due to a lack of data and 

information regarding the fate of such equipment at their 
end-of-life. Also, one can argue the end-of-life stage would 
not be a significant criterion of differentiation for these 
mowing systems. Yet, for further studies, to include the 
impact from the disposal, recycling, or reuse of the 
mowers, it could be assumed that the majority of the 
metals parts (e.g., steel, aluminium) are recycled, while 
the remaining materials (e.g., plastics) are either inciner-
ated or sent to landfill according to estimated disposal 
scenarios of durable goods in the United States. In the 
present analysis, actual impact or impact credits from 
potential reuse of parts or recycling of materials are not 
included.

3.5. LIFE CYCLE IMPACT ASSESSMENT (LCIA)

The SimaPro software (version 8.5), developed by PRé 
(Product Ecology Consultants), was used to model the 
different mowing systems and to conduct the comparative 
LCA. Within SimaPro 8.5, the database ecoinvent 3.4 
(2017), the ReCiPe Midpoint (H), and the GWP100a indi-
cators have been used to perform the environmental eva-
luation (see Table 1). Detailed descriptions of the ReCiPe 
metric and GWP100a metric can be found in Goedkoop 
et al. (2008) and Solomon et al. (2007), respectively. 
Particularity, more than ten relevant indicators – represent-
ing the impact on climate change, human health, ecosystem 
quality, and resources depletion – are computed, reported, 
and discussed hereafter. This completes the initial study 
performed for the use case #1.1 where the global warming 
potential indicator (GWP, expressed in kg of CO2 eq.) was 
the only indicator considered for the environmental foot-
print (Saidani et al. 2020a). For the economic side, the total 
cost of ownership (TCO, expressed in $) is the indicator 
used to compare the mowing systems. Finally, several sen-
sitivity analyses are carried out in order to assess the 
influence (on the environmental and economic perfor-
mance) of potential design improvements (e.g., cutting 
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blade width, speed, battery duration) for the autonomous 
solution.

4. RESULTS AND INTERPRETATIONS

4.1. SCENARIO #1: RESIDENTIAL GARDEN

The overall objectives of this scenario are to (i) compare the 
current environmental and economic performance of one robotic 
with conventional lawn care solutions to mow a 0.25- or 0.5-acre 
residential garden, as detailed in the previous section; (ii) evaluate 
the environmental and economic benefits of an augmented and 
more intelligent robotic allowing a reduction of its usage time 
through, e.g., a higher speed, a larger cutting blade, an optimal 
path planning, or an improved battery pack.

The use case #1.1 of this study compares the robotic 
mower with gasoline and electric walk-behind mowers in 
a residential context, specifically for a 0.25-acre lawn, i.e. 
the average US lawn size. This use case #1.1 is further split 
into three situations: (i) the situation (Figures 7–8) one con-
siders a homeowner who decides to maintain the lawn per-
sonally, and the situations two and three consider lawncare 
being outsourced to either (ii) an independent worker (Figs. 
9a-9b), or (iii) a private lawn care (PLC) company (Figure 
9c-d), respectively. The compared products for this use case 
#1.1 are following: 1 generic gasoline push (walk-behind) 
mower; 1 generic electric push (walk-behind) mower; 1 

autonomous robotic mower, with current features; 1 auton-
omous robotic mower, with improved features, enabling 
a reduction in its use time (as illustrated through the X-axis 
of Figures 7–12); 1 autonomous robotic mower, with ideal 
path planning. The relevance of these use cases resulted from 
discussions with the OEM on the targeted market segments 
for the new autonomous solution.

Note that for space and clarity consideration, as the approach is 
very similar for each scenario and associated use cases, we are 
detailing in the main body of this manuscript the complete results 
(with illustrative graphs and figures) of the lifecycle impact assess-
ment solely for the first scenario and its use case #1.1. The detailed 
results for use case #1.2 are available in Appendix A, to mainly 
focus on the interpretation and comparison of these different 
scenarios in the present manuscript.

According to the comparative LCA results mapped out in 
Figure 7, it appears that owning an autonomous robotic 
mower is a less carbon-intensive alternative to gasoline push 
mower: 23% reduction of carbon dioxide emissions for the 
current autonomous version, and up to 70% for an improved 
robotic mower with optimal path planning. In absolute terms, 
the emissions of half a metric ton of carbon dioxide could be 
avoided thanks to the replacement of one gasoline pushing 
mower by one robotic mower under optimal path planning. 
This value represents non-negligible as it represents around 
10% of the annual emissions of an average US car (EPA- 
Environmental Protection Agency 2019b).

Figure 6. Modelling the changing losses of li-ion battery recharge.
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However, looking at the total cost of ownership over the 10- 
year lifetime of such equipment, the actual higher buying of 
autonomous mower could be a hindrance to their adoption. 
Interestingly, according to Figure 10, it could take up to eight 
years for the owner of the autonomous mower to intrinsically 
get a return of investment (using the TCO indicator) com-
pared to the purchase and use of conventional lawn mowing 
systems. As such, from the OEM perspective, extending the 
expected useful life of their autonomous solution would be 
a promising line for future improvement in the next genera-
tions of robotic mowers, as further discussed in sub-section 
4.3.

In the meantime, as illustrated through situations two and 
three (see Figs. 9b, 9d, 10), when integrating how much one is 
valuing their time or the price of outsourcing their mowing, 
owning an autonomous mower could become a competitive 
alternative. Note that for situations two and three, the trans-
portation impact attributed to the commute of an independent 
worker or of a private lawn care company has been included, 
assuming, per visit, a 3-mile travel distance using a passenger 
car for the second situation (Fig. 9a), and a 6-mile travel 
distance using a light commercial vehicle (to carry the mowing 
equipment) for the third situation (Fig. 9 c).
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To complete this single environmental indicator analysis, 
further environmental analyses have been conducted following 
the ReCiPe (H) methodology with midpoint indicators, as 
illustrated in Figure 11a, 11b, and 11c. Importantly, although 
it is essential to be able to contribute in mitigating the green-
house gas emissions through quantitative studies, we must 
ensure at the same time that there are no negative impact 
transfers, especially here with the impact related to the manu-
facturing and use of batteries for electrical solutions (Saidani 
et al. 2020a).

Here are the three takeaways provided by this comple-
mentary multi-indicators analysis. First, overall, the electri-
cal solutions (conventional and autonomous), batteries and 
their replacements included, perform better than the gen-
eric gasoline solution. Second, except for the following 
indicators: human toxicity, ecotoxicity, freshwater eutro-
phication, and metal depletion (mainly because of (i) 
lithium-ion batteries and their replacements, (ii) the aver-
age US electrical mix). But in absolute terms, this impact 
surplus is not huge or outrageous compared to the fairly 
large benefits on global warming potential, ozone depletion, 
and fossil depletion indicators. Third, the positive and 
promising point for the autonomous solution is that its 
optimised version (i.e., optimal path planning) version is 
better than conventional electric and gasoline solutions on 
all indicators, except one (metal depletion).

The use case #1.2 of this study differs from the previous one 
by comparing the robotic mower with a gasoline riding mower 
and an electric riding mower, to mow a larger residential 
garden. The three situations for this scenario remain the 
same as the ones for use case #1.1: situation one considers 
a homeowner who decides to personally maintain the lawn, 
and situation two and three consider lawncare being out-
sourced to an independent worker or a private lawn care 
company. The detailed results for this use case #1.2 are avail-
able in Appendix A (see Figure A1, Figure A2, Figure A3, and 
Figure A4).

In all, the main interpretations of these comparative LCA 
and LCC results for scenario #1 is that: (i) the robotic mower 
appears to be a non-negligible greener alternative to both 
gasoline push/riding mower; (ii) the environmental savings 
could be significantly higher by improving the autonomous 
mower efficiency; and, (iii) when integrating hidden cost 
(labour cost and/or time saved for the user) the robotic 
mower could be an even cheaper alternative than human- 
operated mowing service.

4.2. SCENARIO #2: PROFESSIONAL MOWING ACTIVITY

The use case #2.1 of this study compares the performance of 
the robotic mower with a gasoline ride-on mower, in 
a commercial use context, to mow a 1.32-acres football field. 
The required mowing time for the autonomous mower under 
random-walk path planning is still determined by the Matlab 
simulation model (described in sub-section 3.3). Note that 
through complementary sensitivity analyses conducted in the 
next sub-section, this time value would change according to 
the change of speed and blade width. After an initial calcula-
tion, it has been discovered that it would take for the robotic 
mower under random path planning 139 hours per week to 
cover a 1.32 acres field, leaving 29 hours of spare time for the 
field to be used (by the football players, for training and match 
purposes).

Thus, this use case compares a total of four different sys-
tems, namely: one robotic mower under random path plan-
ning (when the field is used less than 29 hours a week), two 
robotic mowers under random path planning (to enable more 
than 29 hours of spare time for the field to be used), one 
robotic mower under ideal path planning, and one gasoline 
riding mower ideal path planning. As illustrated through 
Figure 12, the robotic mower with ideal path planning per-
forms the best from a carbon emission standpoint, while the 
gasoline riding mower appears to be the least environmentally 
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Figure 11. a (top). Comparative LCA – ReCiPe (H) midpoint indicators – Impacts on human health. b (middle). Comparative LCA – ReCiPe (H) midpoint indicators – 
Ecosystem impacts.c (bottom). Comparative LCA – ReCiPe (H) midpoint indicators – Resources depletion.
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friendly solution for such usage. Note that by improving the 
path planning of the autonomous mowing system, the carbon 
footprint of the robotic mower can be reduced by more than 
75% in this situation.

Comparing the LCC results of the different systems (see 
Figure 13), the robotic mower under ideal path planning still 
performs the best from the economic perspective. Yet, in this 
situation, owning the current version of the autonomous 
mower (under random-walk path planning) does not appear 
to be a cost-effective solution compared to the conventional 
gasoline riding mower. In fact, due to the lack of efficiency of 

the robotic, the maintenance cost of the robotic under random 
path planning is significantly higher than that of the ideal path 
planning. Promising areas of improvement for the autono-
mous solution include, as further quantified in sub-section 
4.3, increasing the cutting width of the blades and the lifespan 
of the battery, while increasing the efficiency of the path plan-
ning algorithm.

The use case #2.2 of this study compares the performance of 
the robotic mower with conventional mowing solutions to 
maintain a 4-acre schoolyard, namely: one generic gasoline 
riding mower, one generic electric riding mower used by the 
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owner or dedicated employee of the school, and by hiring 
a private lawn care company bringing its gasoline riding 
mower. As mentioned in Figure 14, note that a fleet of four 
robotic mowers, operating at a random-walk path planning, 
are required the cover the full schoolyard on a weekly basis.

Comparing the LCA results for the different mowing 
systems (see Figure 14), the electric solutions – whether 
the electric riding mower, the robotic mower with optimal 
path planning, or the fleet of the current generation of four 
robotic mowers – outperform the gasoline solution in terms 
of carbon dioxide mitigation. From an economic perspective 
for the school owner (see Figure 15), the robotic mower 
under ideal path planning is the most cost-effective solution, 
followed by the gasoline riding mower, the electric riding 

mower, and the fleet of four robotic mowers with random- 
walk path planning.

After comparing the autonomous mowing solution with 
human-operated counterparts though these two use cases, 
it is clear that a robotic with ideal path planning is the 
most attractive option from an environmental and eco-
nomic standpoint (under the assumption that adding such 
a feature would not increase its cost or overall ecological 
footprint), while the current version of the robotic mower 
has still a large potential of improvement. Particularly, the 
present state of a robotic fleet would be an inferior option 
to the existing ride-on mowers and therefore needs to 
improve on its efficiency by employing better path plan-
ning algorithm, and potentially having a larger blade width 
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and an enhanced powertrain, to cover a larger area and 
decreasing its use time.

4.3. SENSITIVITY ANALYSIS: IMPACT OF DESIGN 
IMPROVEMENTS ON THE SUSTAINABILITY PERFORMANCE

Based on the results reported in the previous sub-sections, 
sensitivity analyses are carried out to identify more specifically 
the most promising improvement directions for the next 
generation(s) of robotic mowers. For each case, new calcula-
tions are done with an improvement of a single parameter 
(namely, battery lifespan, blade lifespan, blade width, speed) 
by 5% and 10%. The basic assumption for this analysis is that 

the bill of material remains unchanged for the autonomous 
solution. It is indeed considered here that a 10% improvement 
on the four features or parameters aforementioned would not 
impact the manufacturing impacts significantly. Note also that 
the conventional human-operated mowing systems remain 
unchanged as a comparative baseline.

This sub-section particularly exposes the results of the 
sensitivity analysis for the case #2.1 (i.e., mowing a 1.32-acre 
football field) in Figure 16, which is the intermediate use case 
in terms of acreage covered by the robotic mower, but note 
that similar trends have been found running sensitivity ana-
lyses for the other use cases. Out of the four design parameters 
tested, improvements of the blade width and the speed provide 
the most significant environmental and economic benefits, 

Figure 16. Results of the sensitivity analysis on the robotic mower for the use case #2.1.
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followed by an enhanced battery lifetime. Augmenting the 
time-efficiency of the current generation of robotic mower is 
actually key to substantially reduce the energy consumption 
and associated CO2 emissions (depending on the energy mix).

Combining this sensitivity analysis with the previous find-
ings, the main directions of improvement for the robotic 
mower to be more competitive, in front of conventional mow-
ing systems, are the following (by order of importance): 
enabling an optimal path planning (or at least, reducing the 
number of overlaps), wider cutting blades, higher speed, and 
more durable and/or performant lithium-ion batteries. 
Promising and concrete lines of future research to augment 
the sustainability of the autonomous robotic mowing solutions 
are further discussed in the next section.

5. Conclusion and perspectives

Comparing the sustainability performance of autonomous 
mowing equipment with their human-operated counterparts 
is not straightforward. While having a similar overall function, 
it has been found that there are non-negligible differences – in 
terms of features (e.g., random vs. optimal path planning), 
constraints (e.g., boundary wire, battery duration) or freedom 
of operation (e.g., a possible non-stop 24-hour time window 
for the autonomous system). Having to consider these specifi-
cities when defining the functional unit and system boundaries 
is a key challenge for a sound comparative environmental and 
economic assessment. While few studies have been assessing 
the environmental and economic performance of autonomous 
systems, except in the automotive industry, this piece of 
research brings a new contribution in that regard for the 
gardening (residential or commercial) sector. Particularly, 
through LCA and LCC, environmental and economic trade- 
offs between the autonomous and conventional mowing solu-
tions have been highlighted, as summarised in Table 3, accord-
ing to relevant usage scenarios, from mowing his own garden 
to maintaining larger fields like a football stadium or 
a schoolyard. This study also sheds interesting lights on poten-
tial design improvements for the next generations of autono-
mous lawn mowing systems. In fact, sensitivity analyses – on 
key parameters influencing the performance of the autono-
mous mower – have been conducted to evaluate the environ-
mental and economic benefits of an augmented robotic, 
allowing a reduction of use time, through appropriate incre-
mental or radical design improvement.

In addition to the contribution to the scientific literature on 
the quantification of the sustainability performance of auton-
omous systems in comparison with traditional ones in the 
gardening sector, the findings reported here could support 
decision-makers in the industry with tangible elements of 
improvement (e.g., for original equipment manufacturers of 
autonomous mowers), as well as policy-makers (e.g., to foster 
the adoption of greener mowing solutions. It is indeed the role 
of life cycle engineering researchers and designers to help 
quantify and inform on the real impact of these new and 
advanced autonomous systems, in order to figure out how to 
exploit the full potential of such systems in terms of sustain-
ability performance.

On the one hand, to be a cost-effective alternative in the 
long run, as well as to be a competitive solution for larger 
fields, the following areas of improvement for the next genera-
tion of autonomous mowers are essential. First, the main 
recommendation from our analysis is to improve the path 
planning of robotic. Indeed, in its current version, it has no 
topological understanding of the yard that it is operating in; 
thus, it has no path-planning capabilities. This lack of spatial 
awareness is actually a major design shortcoming and should 
be a focus for improvement in the next generation of the 
autonomous mower. Some OEMs are already working in this 
direction and are trying to implement optimal path-planning 
capabilities, using high-precision navigation systems, allowing 
an accuracy of 2 to 3 centimetres to track and control the 
mower. In the meantime, a short-term solution could be to 
do so by adding in the possibility for the user to self-program 
a path flowing the topology of the field to mow. Taking 
inspirations from current path planning for autonomous clea-
ners could also be relevant to study the time-efficiency of 
several navigation systems to cover a field, including e.g., 
a spiral walk, wall following (boundary wire following here, 
in the case of lawn mowing systems), or S-shape path planning, 
combined with a smartphone pairing function (Liu, Lin, and 
Zhu 2008; Hasan and Reza 2014). Second, the width of the 
cutting blades, the speed, and the battery performance of the 
robotic mower are other key directions of improvement to 
augment its sustainability.

On the other hand, while the market is currently dominated 
by gasoline-powered mowing systems (Banks and McConnell 
2015; Technavio 2017), the present findings showed that the 
electric solutions – either the robotic mower or the electric 
push/ride-on mowers – are more environmentally friendly 

Table 3. Ranking of solutions for each use case from an economic and environmental perspective.

Recommended mowing solutions
Use case #1.1 
(0.25-acre)

Use case #1.2 
(0.5-acre)

Use case #2.1 
(1.32-acre)

Use case #2.2 
(4-acre)

For the environment 
(global warming potential indicator)

1. Robotic (optimal path) 
2. Electric push 
3. Robotic (random walk) 
4. Gasoline push

1. Robotic (optimal path) 
2. Robotic (random walk) 
3. Electric riding 
4. Gasoline riding

1. Robotic (optimal path) 
2. Robotic (random walk) 
3. Gasoline riding

1. Robotic (optimal path) 
2. Electric riding 
3. Robotic (random walk) 
4. Gasoline riding

For economic profitability (owner/user perspective) 1. Gasoline push 
2. Electric push 
3. Robotic (optimal path) 
4. Robotic (random walk)

1. Gasoline riding 
2. Robotic (optimal path) 
3. Electric riding 
4. Robotic (random walk)

1. Robotic (optimal path) 
2. Gasoline riding 
3. Robotic (random walk)

1. Robotic (optimal path) 
2. Gasoline riding 
3. Electric riding 
4. Robotic (random walk)
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than the gasoline push and ride-on mowers. Yet, the initial 
buying prices for these electric alternatives are higher than the 
well-established gasoline mowers. As such, such a study can 
help policy-makers quantify and set up an appropriate financial 
incentive (Miller 2018) to support the adoption of the electric 
mowing systems (of course, where it makes sense environmen-
tally according to the energy mix used in a given country or 
region). Notably, the willingness to pay for the autonomous 
solution could also be further investigated, as owners might not 
take into consideration the total cost of ownership over a 10- 
year period when buying products. Importantly, the price evo-
lution of the robotic, in case of mass production, increased 
market share, or improved features should be further discussed 
as well. Also, one has to bear in mind that the ongoing research 
and development to increase the performance of lithium-ion 
batteries (Sangwan and Jindal 2013; International Energy 
Agency 2017; Rigamonti et al. 2017; Akram and Abdul-Kader 
2021), as well as the shift from fossil-based energy to renewable 
energy (Lu et al. 2010; Caldeira and Brown 2019; UNEP-United 
Nations Environment Programme 2019; Visual Capitalist 
2019), are factors that would influence positively the environ-
mental footprint of electricity-powered solutions.

Eventually, one limitation of the present study is that 
the end-of-life fate and impact of the different mowers are 
not considered in the comparative life cycle assessment, as 
explained in sub-section 3.4. When more reliable data 
would be available, e.g., related to the end-of-life pathways 
of robotic mowers or potential recycling options for 
lithium-ion batteries, it would be interesting to update 
this study and analyse how it impacts the overall life 
cycle performance. Meanwhile, designing the new genera-
tion of robotic mower in a circular economy perspective 
(including, e.g., design for easy-disassembly, business mod-
els facilitating take-back scheme and remanufacturing) 
appears as a promising and timely line for future research 
(Saidani et al. 2019b, 2020b). In this case, the system 
boundaries of the LCA and LCC would have to be 
extended to two or more successive purchases from the 
same product line of mowers. Notably, it might be relevant 
to consider possible product-as-a-service scenarios (Kjaer 
et al., 2019) for the robotic mower, in order to facilitate the 
traceability, optimised maintenance operations during the 
use phase, and recovery at its end-of-life for the manufac-
turer. In this case, it could be particularly interesting to 
evaluate and discuss the economic profitability of such 
product-service systems for the producers, as well as the 
environmental implications of such a shift of business 
model. Last but not least, further works are encouraged 
to scale up comparative LCA and LCC to wider and more 
complex systems (e.g., autonomous tractors working in 
fleet and collaboration with the farmer (Walter et al. 
2017) at a scale of a whole crop product system). More 
industrial case studies, integrating as well social indicators, 
would be essential to ensure that the shift towards more 
autonomous systems is truly sustainable not only from 
a profitability point of view, but also for the planet and 
the people.
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Figure A1. Comparative LCA – GWP indicator – Use case #1.2 Situation 1.

Appendix A. Details of the results for the use case #1.2
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Figure A2. Comparative LCC – TCO indicator – Use case #1.2 Situation 1.
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Figure A3. a. (upper left). Comparative LCA – GWP indicator – Use case #1.2 Situation 2. b. (upper right). Comparative LCC – TCO indicator – Use case #1.2 Situation 2. 
c. (lower left). Comparative LCA – GWP indicator – Use case #1.2 Situation 3. d. (lower right). Comparative LCC – TCO indicator – Use case #1.2 Situation 3.
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