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A B S T R A C T

Recently, many studies on product design have been utilizing online data. They analyze user-generated online
data and draw design implications. However, most of them provide customers’ tendency for feature categories
rather than spec ranges for sub-features, which are crucial in industrial applications. This paper proposes
an approach based on data mining and neural networks to extract spec guidance for engineering design
from online data. First, product sub-features are extracted from online data, and customer choice sets are
constructed. Next, a neural network choice model is trained based on these choice sets. Finally, the model
is interpreted by SHAP (SHapley Additive exPlanations). In the final stage, this study proposes a method for
analyzing the obtained SHAP values to draw new design implications. The suggested approach was tested on
smartphone review data, and the result provides a set of recommended spec values for each sub-feature. The
resultant spec guidance can help companies design a product with spec configuration preferred by customers.
1. Introduction

With the increasing amount of online user-generated data and the
development of data analysis techniques, many researchers have been
utilizing online data in the product design area. They propose various
methods for analyzing online customers and discovering design impli-
cations for new products. Some of them focus on numeric parts, such
as review numbers and ratings (Chevalier and Mayzlin, 2006; Sun,
2012; Chong et al., 2017). Others analyze textual data using NLP (Nat-
ural Language Processing) techniques. These studies extract customer
needs (Ali et al., 2020; Jiao and Qu, 2019) and preferences (Wang et al.,
2020) for product attributes, discover new product features (Goldberg
and Abrahams, 2022), and identify changes in usage patterns (Zhou
et al., 2019). Although these studies provide some design implications,
they have limitations in practical design applications.

In industry, a company releases a new product through various
tasks, including product design, development, component sourcing,
assembly, and production (Pahl et al., 2007). As can be inferred from
‘component sourcing and assembly’, the company manufactures the
product by combining multiple components. Therefore, a general prod-
uct feature consists of several sub-features. For example, in smart-
phones, the camera feature includes two parts—rear and front camera
modules. Also, a part is described by its features. Specifically, screen
components have different sizes, resolutions, and types. In this paper,
the term ‘sub-feature’ means both the part and part features. In the
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product design stage, the range of specs for sub-features must be
determined so that the company can start sourcing necessary parts.
However, most studies focus on product feature categories instead of
specific sub-features.

A choice model (McFadden, 1986), which analyzes the customer’s
behavior within given alternatives, can be a solution to this problem. A
logit model based on random utility is the widely used choice model in
market-based engineering design (Chen et al., 2012). It analyzes the re-
lationship between relevant attributes and customers’ choices. Since the
model considers product sub-features, it can draw design implications
on them. However, the logit model has limitations in that it cannot
capture non-linearity between input terms and customers’ choices.
The resultant design implications only provide customers’ tendency
for sub-features, not their preferences for spec ranges. For example, a
negative coefficient for the price means that customers prefer lower
prices. However, the reality can be that customers do not prefer too
low prices due to out-of-date specs, and they may want middle-range
priced products. The previous model could not capture this nonlinear
property. Recently, many studies on choice models adopted neural
networks (NN) to capture non-linearity (Lee et al., 2018; Nam and
Cho, 2020; Sifringer et al., 2018). The NN model identifies linear and
nonlinear relationships between input and output (customer choice),
so it provides higher prediction accuracy. However, the NN model also
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Table 1
Literature review (Data-Driven Design).

Literature Method Automated data collection Feature importance Spec guidance

Wang and Chen (2015), Suryadi and
Kim (2019)

Choice Model ✓ ✓

Archak et al. (2007) Linear Regression ✓ ✓

Joung and Kim (2021) NN + SHAP ✓ ✓

Tuarob and Tucker (2015) Sentiment Analysis ✓ ✓

Zhou et al. (2019), Bi et al. (2019) Kano Model ✓ ✓

Our study NN + SHAP ✓ ✓ ✓
has limitations in that it is difficult to interpret. As a result, there is a
trade-off between accuracy and interpretability.

This research addresses the above limitations by interpreting the NN
choice model with SHAP (SHapley Additive exPlanations). A method
for analyzing the obtained SHAP values is proposed to draw new design
implications. The result shows that the suggested approach provides
spec guidance, i.e., recommended spec ranges for product sub-features.

The rest of the paper is organized as follows. In Section 2, previous
works relevant to this research will be presented. In Section 3, the de-
tailed process of the proposed methodology will be explained. Section 4
will show the simulation of the proposed methodology on actual data
collected from online sources. The simulation result will be presented in
Section 5. Section 6 will evaluate the performance of the choice model
and discuss managerial implications of the result. Finally, Section 7 will
summarize the whole idea of the research and discuss future works.

2. Related works

In this section, three main topics relevant to this research will be
presented. The first topic is data-driven design. Previous studies in
this field and their limitations will be discussed. In the second topic,
research about customer choice models will be introduced. The final
topic is neural networks. In this topic, the state-of-the-art method for
explaining neural networks will be discussed.

2.1. Data-driven design

Data-Driven Design can be defined as the design based on the use
of data science algorithms supporting a specific phase of the prod-
uct development process (Bertoni, 2020). Product designers can make
smart decisions by analyzing the data that brings new opportunities to
enhance the production efficiency and product competitiveness (Feng
et al., 2020). Chiarello et al. (2021a) conducted a literature review at
the intersection between data science and engineering design and iden-
tified the challenges to be tackled to maximize the synergies between
the two fields. They pointed out that while data-driven methods are
common practices in medicine, engineering, defense, and other safety–
critical systems, using these methods in consumer product design is
a relatively recent phenomenon. In this section, recent studies about
consumer product design based on data mining are presented.

Regarding data sources, various types of sources are used in engi-
neering design research (Chiarello et al., 2021b). The dominant data
source is human interactions such as group discussion and interviews,
but it requires much time and cost. As an alternative, recent studies
utilize online data from web sources. The most powerful benefit of
online data is that we can collect a large amount of data in a short
period with little cost. This study also used online data, and relevant
studies are presented below.

The basic step of online data analysis for consumer product design is
product feature extraction. Various NLP (Natural Language Processing)
techniques such as association mining (Hu and Liu, 2004; Spreafico
and Spreafico, 2021), Word2Vec (Mikolov et al., 2013; Giabelli et al.,
2022), and LDA (Latent Dirichlet Allocation) (Blei et al., 2003) were
applied to online data to identify feature-related words mentioned by
customers. Based on these feature terms, researchers proposed diverse
approaches to draw design implications.
2

One of the approaches is to analyze the relationship between prod-
uct features and desirable outputs such as high sales ranking and high
star ratings. Wang and Chen (2015) and Suryadi and Kim (2019) con-
structed choice sets using online user data and analyzed the influence
of product features on the customer’s purchase decision. Archak et al.
(2007) analyzed online review data and modeled product demands as a
linear function of product attributes. The coefficients in the regression
result show the effect of each product feature on sales ranking. Joung
and Kim (2021) suggested a methodology to identify the importance of
product features based on review ratings. They built a neural network
model, where the input data is the sentiment scores, and the output
data is the customer’s rating for the product. By analyzing the trained
model, the authors obtained influence scores of product features on the
ratings.

Another approach is to observe the changes in customer sentiments
for features. Tuarob and Tucker (2015) detects feature-related terms in
Twitter mentions by utilizing a bootstrapping algorithm. Based on the
extracted keywords, the authors compared the customers’ sentiments
for the same feature of two consecutive products. For example, they
observed how the ratio of positive sentiments for the ‘screen’ feature
was changed between iPhone4 and iPhone5. The result gives clues
about which features to improve or maintain for the next generation
of products. Zhou et al. (2019) and Bi et al. (2019) presented a
Kano model based on online data analysis. After identifying feature
words in online reviews using LDA, the authors detected corresponding
sentiments. Then, by analyzing the polarity and score of sentiments,
the authors divided all features into four categories—must-be, per-
formance, excitement, and reverse. The characteristics of categories
are defined in the Kano model, so the result provides product design
strategies for features in each category.

Table 1 summarizes the studies mentioned above. They proposed
various data-driven design methods using online data. However, the
design implications derived in the results are about feature impor-
tance, which is insufficient for industrial applications. This study is
distinct from other data-driven design research by providing spec guid-
ance for sub-features based on customer preference from online data.
The following subsections explain the background of the proposed
approach.

2.2. Customer choice model

Discrete choice analysis (DCA) uses the principle of utility max-
imization. In DCA, a decision-maker selects the alternative with the
highest utility among available options (Ben-Akiva and Lermna, 1985).
Regarding utility, the concept of random utility is adopted assuming
that the individual’s true utility consists of a deterministic part 𝑉 and
a random disturbance 𝜖 as shown in Eq. (1). 𝑈𝑛𝑖 represents the utility
of customer 𝑛 obtained by purchasing product 𝑖. The deterministic
part 𝑉𝑛𝑖 can be represented as a function of observable independent
variables such as product features (Chen et al., 2012). In Eq. (1), 𝑉𝑛𝑖
is the weighted sum of product features where 𝑥𝑖𝑘 represents the spec
of feature 𝑘 of product 𝑖. 𝛽𝑛𝑘 is the importance that customer 𝑛 has
for feature 𝑘. The probabilistic distribution assumed for 𝜖 determines
the analytical relation between the choice probability and the observed
component (𝑉𝑛𝑖) of the utility functions, and hence the type of discrete
choice model (Ramanujam and Balakrishnan, 2011). A multinomial
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logit (MNL) model yields the choice probability shown in Eq. (2). 𝑃𝑟𝑛𝑖
indicates the probability of customer 𝑛 choosing product 𝑖. 𝐽 represents
a set of products, and 𝑉𝑛𝑗 comes from Eq. (1).

𝑈𝑛𝑖 = 𝑉𝑛𝑖 + 𝜖𝑛𝑖 =
∑

𝑘
𝛽𝑛𝑘𝑥𝑖𝑘 + 𝜖𝑛𝑖 (1)

𝑃𝑟𝑛𝑖 =
𝑒𝑉𝑛𝑖

∑

𝑗∈𝐽 𝑒𝑣𝑛𝑗
(2)

There have been a few studies about online data-based choice
models (Wang and Chen, 2015; Suryadi and Kim, 2019). Suryadi and
Kim (2019) suggested a probabilistic sampling method called nor-
malized sampling. Their methodology consists of four stages. First, a
dataset of laptop products is collected from Amazon.com. The data
contains product specifications and customer reviews. The products
are clustered based on the collected spec data. The second stage is
customer clustering. In this stage, product reviews are used for defining
customer attributes. The authors identified product feature words in
the review data using word embedding and extracted sentiments asso-
ciated with the feature words. These sentiments become attributes that
characterize customers. Then, reviewers (customers) are clustered by
X-means clustering based on these customer attributes. The next stage
is generating sampling distributions. Based on the clustering results
from the first two stages, the method creates the sampling distribution
for each customer cluster. Unlike the random distribution where all
products are uniformly weighted, products have different weights for
different customer clusters. The product weight is determined based
on the sales record within the customer cluster. In the final stage,
choice sets are constructed based on this normalized distribution. The
constructed choice sets become the input data for the MNL model.

In this study, random sampling and normalized sampling methods
are used for choice set construction. The detailed process will be
explained in Section 3.

2.3. Explainable neural networks

An artificial neural network (NN) has become a popular model in
many disciplines (Abiodun et al., 2018). In the manufacturing industry,
NN provides methods and tools to address issues due to the massive
data scale (Dekhtiar et al., 2018). In DCA, there have been studies
adopting NN (Lee et al., 2018; Sifringer et al., 2018; Nam et al.,
2017) to enhance the performance of choice models. They compare
the logit and NN model and show that the NN model gives higher
accuracy in predicting choices. However, the NN model has a downside,
the difficulty of interpretation. None of the above researches provides
explanations for the resultant NN model. Adopting an NN model was a
trade-off between accuracy and explainability.

Lundberg and Lee (2017) proposed SHAP to address this problem.
SHAP is an approach based on Shapley values in a game theory in-
troduced by Roth (1988). As ‘Additive’ in the name implies, SHAP
uses an additive feature attribution method shown in Eq. (3). 𝑔(𝑥′)
approximates actual output 𝑓 (𝑥). 𝑥′𝑖 is a binary variable that maps
to the original input 𝑥𝑖, and 𝑀 is the number of input features. 𝜙𝑖
represents the effect that attribute 𝑥′𝑖 has on the output 𝑔(𝑥′). Therefore,
the method approximates the output 𝑓 (𝑥) by attributing an effect 𝜙𝑖 to
each feature 𝑥′𝑖 and summing all influences.

𝑓 (𝑥) = 𝑔(𝑥′) = 𝜙0 +
𝑀
∑

𝑖=1
𝜙𝑖𝑥

′
𝑖 (3)

In Lundberg and Lee (2017), Lundberg & Lee mentioned three desirable
properties for a solution in the class of additive feature attribution
method: local accuracy, missingness, and consistency. The only possible
model for Eq. (3) that satisfies all three properties is shown in Eq. (4).
𝑧′ is a subset of input variables 𝑥′, and |𝑧′| is the number of non-zero
entries in 𝑧′. It compares the output value for subset 𝑧′ and the value

′ ′ ′
3

when attribute 𝑖 is excluded from subset 𝑧 , i.e., 𝑓𝑥(𝑧 ) − 𝑓𝑥(𝑧 ⧵ 𝑖). The
Fig. 1. SHAP diagram (Lundberg and Lee, 2017).

model evaluates the difference in the output made by including input
𝑖 for all combinations of features.

𝜙𝑖 =
∑

𝑧′⊆𝑥′

|𝑧′|!(|𝑀| − |𝑧′| − 1)!
|𝑀|!

[𝑓𝑥(𝑧′) − 𝑓𝑥(𝑧′ ⧵ 𝑖)] (4)

As a solution to Eq. (4), Lundberg & Lee proposed SHAP values.
They are the Shapley values of a conditional expectation function of the
original model. Specifically, in Eq. (4), 𝑓𝑥(𝑧′) = 𝑓 (ℎ𝑥(𝑧′)) = 𝐸[𝑓 (𝑧) | 𝑧𝑆 ]
where 𝑆 is the set of non-zero indexes in 𝑧′. Fig. 1 shows how SHAP
values explain an NN model. The figure illustrates the change in the
expected model prediction when conditioning on each feature. Specifi-
cally, 𝜙𝑖 represents the influence of input 𝑥𝑖 on the model output. The
direction of arrows implies that 𝑥1, 𝑥2, and 𝑥3 have positive influence
(𝜙𝑖 > 0) on the output, and 𝑥4 has negative impact (𝜙𝑖 < 0) on the
output value.

Recent studies have adopted SHAP to interpret the resultant NN
models (Joung and Kim, 2021; García and Aznarte, 2020; Sujith et al.,
2020). They explain the NN model by graphically representing SHAP
values or analyzing statistical properties of the SHAP values. This paper
applies SHAP to the NN choice model to interpret customers’ decisions.
A method for analyzing SHAP values is proposed to draw novel design
implications from the NN choice model. Specifically, the result provides
a range of spec values for product sub-features that customers may
prefer or accept. The obtained design implications will be discussed in
Section 5.

3. Methodology

The proposed methodology consists of three stages, as shown in
Fig. 2. In the first stage, choice sets are constructed based on online
data. In the second stage, a neural network choice model is trained
based on the choice sets. Finally, the choice model is interpreted based
on SHAP, and the SHAP values are further analyzed to draw design
implications.

3.1. Choice sets

In this stage, the method collects two types of data: (i) customer
reviews for products; (ii) product attributes. Both are obtained online.
Then customer choice sets are constructed based on the collected data.

3.1.1. Collecting data
Customer reviews can be collected from e-commerce websites (sim-

ilarweb, 2022) such as Amazon1 and eBay.2 Regarding product at-
tributes, it is recommended to collect data on all attributes that influ-
ence consumers’ purchasing decisions (Gowharji and Whitefoot, 2021).
The proposed methodology identifies features of customer interest by
analyzing customer reviews. Among various approaches for feature ex-
traction (Archak et al., 2007; Joung and Kim, 2021; Tuarob and Tucker,
2015), the method based on Word2Vec (Park and Kim, 2022) was
adopted because the sub-feature level is required in engineering design.
For example, the ‘screen’ feature consists of multiple sub-features such
as screen size, screen resolution, screen type, etc. In engineering design,
decisions are made on these sub-features, not the feature category.

1 Available: https://www.amazon.com.
2 Available: https://www.ebay.com.

https://www.amazon.com
https://www.ebay.com
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Fig. 2. Overview of the proposed methodology.
Fig. 3. Sub-feature extraction.
The method of Park and Kim (2022) extracts sub-features while most
methods extract feature categories.

It is considered necessary to summarize the method for sub-feature
extraction while the details are available in Park and Kim (2022). Fig. 3
shows the overall process of sub-feature extraction. In data prepro-
cessing, online customer reviews and product manual documents are
collected and preprocessed. In specific, special characters are removed,
and all punctuations are replaced with a period. Upper case letters are
transformed into lower cases, and all words are lemmatized. Stopwords
are not removed as it affects the phrase extraction to be performed in
this step.

For phrase embedding, the lemmatized words from the review data
are embedded into vectors. Next, the method extracts phrases in the
review data. Among the extracted phrases, the ones that contain words
never mentioned in the product manuals are removed. The remaining
phrases are embedded into a vector space by Eq. (5) where 𝑊𝑖 denotes
word 𝑖 and 𝑊⃗𝑖 represents a vector for word 𝑖. 𝐹𝑟𝑒𝑞(𝑊𝑖) means the
frequency of word 𝑖 in the manual documents.

Phrase = 𝛼𝑖 × 𝑊⃗𝑖 + 𝛼𝑗 × 𝑊⃗𝑗

𝛼𝑖 =
Freq(𝑊𝑖)

Freq(𝑊𝑖) + Freq(𝑊𝑗 )
(5)

In clustering & labeling, phrase vectors are grouped by two clus-
tering methods—HDBSCAN (Mclnnes et al., 2017) and spectral cluster-
ing (Cortesy et al., 2012). The resultant clustered are labeled based on
the TF (Term Frequency) analysis of cluster members. The clusters with
feature-relevant labels are selected, and the phrases in them represent
sub-features mentioned by customers.

This study collects product specifications for all the identified sub-
features. The spec data can be collected online. The online commerce
websites provide product spec information. Also, there exist websites
specialized in certain product categories. For example, GSMArena.com
and phoneArena.com are focused on smartphone products and provide
detailed spec data for each product.

3.1.2. Constructing choice sets
The traditional methods for collecting choice sets are surveys and

interviews, but they require much time and cost. As an alternative,
this study constructs customer choice sets by utilizing online data with
little time and cost. Fig. 4 shows the process of choice set construction
for each reviewer. Let us assume that the first reviewer purchased
product 𝑃12. Then, it is assigned to the choice set, and the choice
value of 𝑃 12 becomes 1. Next, the remaining alternatives are selected
from product candidates, which include all products in the review data
4

Fig. 4. Constructing choice sets.

except 𝑃 12. This study adopts two sampling methods for alternative
selection—random sampling and normalized sampling. The random
sampling method assumes a uniform distribution, i.e., all products
have an equal probability of being selected as an alternative. The
normalized sampling method (Suryadi and Kim, 2019) assumes a non-
uniform distribution. As explained in Section 2.2, the method assigns a
different probability to each product based on the sales record. In Fig. 4,
𝑃 42 and 𝑃 35 are selected completing the choice set. Since the choice
always goes to the first alternative, the completed choice set should be
shuffled.

While the previous studies (Wang and Chen, 2015; Suryadi and Kim,
2019) made one choice set for each customer, this study constructs
multiple-choice sets for each reviewer. In surveys, the questionnaire
presents more than one choice set for each respondent (WHO, 2012).
So, in the survey data, each choice set is managed by an observation
ID, which is different from a customer ID. Referring to the survey ques-
tionnaire, this study constructs three observations for each reviewer,
and mange choice sets by customer Id (C) and observation ID (Obs), as
shown in the rightmost table in Fig. 4. The process is repeated for all
reviewers. Then, the resultant choice sets are divided into the train and
test sets. The former is for training a choice model, and the latter is for
evaluating the performance of the trained model.

3.2. Neural network models

In this stage, the method transforms the choice sets from the previ-
ous section to make them fit for neural network input. Then a neural
network model is trained based on these choice sets.
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Table 2
Example of SHAP results.

Input data SHAP values Output C

𝑥1 𝑥2 .. 𝑥𝑘 𝜙1 𝜙2 .. 𝜙𝑘
∑

𝜙𝑖

0.3 0.5 .. 1.0 0.7 −1.6 .. −0.4 −0.3 0
0.3 1.0 .. 0.8 1.4 −0.8 .. 0.5 0.6 1
1.0 0.5 .. 0.5 0.6 −1.2 .. 0.3 −0.3 0
3.2.1. Transforming choice sets
The MNL and NN model have different structures, so the choice

sets need to be transformed to train an NN model. In MNL, the input
data is each observation in Fig. 4, and the model calculates the product
utility for each alternative. The dimension of the input data is (set size)
× (# product attributes). In this study, the choice set contains three
alternatives, and the product has eleven attributes. Therefore, the input
for MNL has a size of 3 × 11. On the other hand, the NN model analyzes
the features of all products in a choice set. For this, product attributes in
each choice set are merged into a one-dimensional array. Specifically,
3 × 11 data is transformed to a 1 × 33 array. The output of the NN
model is a customer’s decision in a choice set, and the decision result
is also merged into a one-dimensional array. For example, the choice
result of Obs 1 in Fig. 4 is transformed to [0, 1, 0].

3.2.2. Training a neural network model
In this study, an NN with one hidden layer is used for training a

choice model. The previous studies about NN choice models used dif-
ferent network structures. One of the commonly used structures is the
three layers network with one hidden layer (Lee et al., 2018; Sifringer
et al., 2018; Alwosheel et al., 2018). Spec values are normalized for
each attribute. For example, the largest screen size among the entire
products becomes 1, and the smallest screen size becomes 0. Regarding
sample size, Alwosheel et al. (2018) tested the required sample size
when using NN for discrete choice analysis. They suggested using a
minimum sample size of fifty times the number of weights in the NN
model. After training, a neural network choice model is obtained. The
performance of the NN model will be evaluated by comparing it with
the multinomial logit model. The result will be discussed in Section 6.

3.3. Design implications

In this stage, SHAP (SHapley Additive Explanations) is conducted
on the trained NN model. And then, the method analyzes the resultant
SHAP values to draw design implications.

3.3.1. Conducting SHAP
As explained in Section 2.3, SHAP analyzes the influence of input

values on the output. Since it calculates the effect of each input value,
the number of SHAP values is the same as the dimension of the input
layer. Table 2 shows the general form of the SHAP result. When the
input data is 𝑘-dimensional, SHAP produces 𝑘 SHAP values for each
input data. These values are summed up to the output, and this output
value determines the expected choice.

The SHAP library in PYTHON provides diverse functions to visualize
SHAP results (Lundberg, 2018), and one of them is shown in Fig. 5.
In this graph, the color bar on the right indicates feature values. The
colors with high saturation represent comparably high spec values. If
the color is close to white (the lowest saturation), it means a com-
paratively low spec value. The 𝑥-axis represents the SHAP value, the
impact on model output. The 𝑦-axis lists product features in order of
greatest influence. In the case of the choice model, this graph shows the
relationship between product specs and customer choices. For example,
the lower the battery capacity of product 1 (our product), the greater
the positive influence on the model output (customer choice). And the
lower the battery capacity of product 2 or 3 (competitors), the greater
the negative effect on model output. Although this graph shows the
tendency for feature specs, it is insufficient for practical application. As
5

Fig. 5. SHAP values.

mentioned in Section 1, product designers need to determine the spec
values of sub-features because a product consists of multiple parts. They
need guidance for spec ranges rather than a tendency for feature specs.

3.3.2. Analyzing SHAP values
This study proposes a method for analyzing SHAP values to derive

design implications about spec ranges and customer decisions. First, the
structure of the SHAP result needs to be modified. When an NN model
predicts the output values such as rating and price, SHAP produces
one set of SHAP values. If the NN model is for classification with 𝑁
classes, SHAP generates 𝑁 datasets. Since the choice model is a type
of classification, this study obtains 𝑁 datasets of SHAP values. The
tables on the left of Fig. 6 are the resultant datasets for the choice
model with three alternatives. In the table, 𝑥𝑖𝑗 is the spec value for
feature 𝑗 of product 𝑖, and 𝜙𝑖𝑗 represents the corresponding SHAP value
for 𝑥𝑖𝑗 . In each dataset, SHAP values show the influence of input data
on the decision for the 𝑁th alternative. In specific, the first dataset
shows the influence of spec values on whether the customer selects
the first alternative. The second dataset shows the impact of product
specifications on whether the customer chooses the second option and
the same for the third set. The result shows the misalignment in the
datasets where the target alternative highlighted in blue is located
on a different column in each table. Therefore, the resultant datasets
need to be properly modified before any further analysis. This study
rearranges the columns in each dataset to place the target alternative
in the first column. It also organizes SHAP values according to the order
of products. And then, the modified SHAP datasets are concatenated,
as shown on the right of Fig. 6. The first column is the test design in
that the model determines the customer’s purchase of this product, and
the following two columns are competitors.

Next, SHAP values in the modified dataset are analyzed. For each
feature of the test design, spec values are sorted in ascending order.
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Table 3
Choice sets.

Obs Alt 𝑆𝑠𝑖𝑧𝑒 𝑆𝑟𝑒𝑠𝑜𝑙 𝑆𝑡𝑦𝑝𝑒 𝑃𝑠𝑝𝑒𝑒𝑑 𝑃𝑛 𝑀𝑟𝑎𝑚 𝑀𝑟𝑜𝑚 𝐶𝑓𝑟𝑜𝑛𝑡 𝐶𝑟𝑒𝑎𝑟 𝐵𝑐𝑎𝑝 𝑃𝑟𝑖𝑐𝑒 Choice

1 1 6.2 2 2 1.8 8 4 64 8 12 3000 299.99 0
2 5.8 3 3 2.8 8 4 64 8 12 3000 499.99 0
3 6.1 3 3 2.8 8 8 128 10 12 3400 649.99 1

2 1 6.3 1 2 2.0 8 3 32 13 13 3500 149.99 0
2 6.1 3 3 2.8 8 8 128 10 12 3400 649.99 1
3 5.8 1 2 1.6 8 2 32 5 8 3000 124.96 0
Fig. 6. SHAP result modification.
Then, for each spec value, the mean SHAP values are calculated. By
analyzing the spec values and corresponding SHAP mean values, design
implications for the spec range are obtained.

4. Case study

The proposed methodology was tested on the smartphone for two
reasons: (i) It is a highly integrated product with multiple sub-features;
(ii) With 85% penetration rate in US (O’Dea, 2021), most people are
familiar with product features.

4.1. Choice sets

This study collected review data from Amazon.com. First, the target
products were selected from the top 100 products in the cell phone
category in Amazon. After removing non-smartphone products and
those with no reviews, 58 products remained. Then, review data was
collected by using a PYTHON package. This study used BeautifulSoup,
but other packages or methods can be used. The raw data includes both
verified and unverified purchases. For the authenticity of the data, only
the reviews marked as ‘verified purchase’ were selected and used in this
study. The final data contains 25,340 reviews about 58 products, and
the reviews were written between May 2017 and July 2020. Products
of the same category have common features, so the study collected
product manual documents for six smartphones: Samsung Galaxy fold,
Galaxy S10, Apple iPhone, OnePlus 7T, Xiaomi Mi, ZTE Blade Z Max.
The collected datasets were cleaned and lemmatized using the Spacy
library in PYTHON. Based on these two datasets, this study extracted
11 sub-features mentioned by customers: {Screen: [size, resolution,
type], Processor: [speed, count], Memory: [ram, rom], Camera: [front,
rear], Battery: [capacity], Price}. Details are presented in Table A.9 in
Appendix A. For product specifications, this study collected data for 58
products from phoneArena.com and GSMArena.com. Although Amazon
provides spec data in the product description, some sub-features are
missing. The two websites mentioned above are focused on mobile
devices and provide information for all the sub-features.

Next, customer choice sets were constructed based on the collected
reviews and product specs. This study used a set size of 3 referring
to the previous research (Wang and Chen, 2015; Suryadi and Kim,
2019). Three choice sets were constructed for each customer by the
random sampling and utility sampling methods. Then, the entire choice
sets were divided into training sets and test sets. The choice model is
trained and evaluated by 5-fold validation, so the ratio of the training
and testing sets is 8:2. Table 3 shows the choice sets from the random
6

Fig. 7. The neural network structure.

sampling method. The ‘Obs’ column shows the choice set ID, and each
choice set has three different alternatives. In the ‘Choice’ column, the
product purchased by a customer is marked as 1.

4.2. Neural network choice models

In this section, an NN choice model was trained based on the
previously constructed choice sets. Regarding the model structure, this
study adopts an NN with one hidden layer, as shown in Fig. 7. With
11 product attributes and three alternatives, the size of the input layer
in the NN model is 33. With three available choices in each choice set,
the size of the output layer is 3. In training, this study conducted a
grid search that evaluates all combinations of hyperparameters. The
list of parameters tested in this research is presented in Table B.10 in
Appendix B. Those with the highest prediction accuracy are as follows:
The model was trained for 500 epochs with a batch size of 100. The
optimizer is Adam, with a learning rate of 0.001. The initializer is
GlorotNormal, and the number of neurons in the hidden layer is 50.
The model was implemented using TensorFlow Keras in PYTHON.

This study also tested a deep neural network (DNN) consisting of 10
hidden layers with a 0.1% dropout rate and the same hyperparameters,
but the DNN did not show better performance ( Table C.11). Similar
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Table 4
SHAP dataset after modification.

Product features (Input values) SHAP values

𝑆𝑇
𝑠𝑖𝑧𝑒 𝑆𝑇

𝑟𝑒𝑠𝑜𝑙 𝑆𝑇
𝑡𝑦𝑝𝑒 ... 𝐵𝐶2

𝑐𝑎𝑝 𝑃𝑟𝑖𝑐𝑒𝐶2 𝑆𝑇
𝑠𝑖𝑧𝑒 𝑆𝑇

𝑟𝑒𝑠𝑜𝑙 𝑆𝑇
𝑡𝑦𝑝𝑒 ... 𝐵𝐶2

𝑐𝑎𝑝 𝑃𝑟𝑖𝑐𝑒𝐶2

6.1 1 2 ... 1821 279.99 −0.0004 −0.0469 −0.0166 ... −0.3543 −0.0310
5.5 2 3 ... 2659 477.07 −0.0396 0.0029 0.0036 ... −0.2051 0.0086
6.6 2 1 ... 3340 229.5 0.1152 0.0089 −0.1509 ... 0.0338 −0.0098
6.7 2 3 ... 3179 624.95 0.1038 −0.0044 −0.0049 ... −0.0075 0.0300
4.7 1 2 ... 3500 149.99 −0.1895 −0.1166 0.0136 ... 0.1910 −0.0358
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results were presented in relevant studies (Lee et al., 2018; Joung and
Kim, 2021). This study also trained an MNL model using the Pylogit
package in PYTHON to compare the performance of choice models.
The Pylogit requires more RAM resources as the data size increases.
This study trained the models on the computer with 32 GB RAM, and
the Pylogit could take up to 60,000 choice sets. The performance of
the models is measured by 5-fold validation and will be evaluated in
Section 6.

4.3. Design implications

The resultant NN model was analyzed by the DeepExplainer method
of the SHAP package in PYTHON. For 60,000 choice sets with three
alternatives, 180,000 sets of SHAP values were obtained. After the
modification process, the values were aligned, as shown in Table 4. On
the top row, the superscript 𝑇 denotes the target design, and 𝐶 means
he competitor. The subscript indicates the sub-features. For example,
𝑇
𝑠𝑖𝑧𝑒 means the screen size of the target design, and 𝐵𝐶2

𝑐𝑎𝑝 means the
attery capacity of the second competitor.

Next, the SHAP values were analyzed for each product attribute of
he target design. Among 11 product attributes shown in Table A.9, the
creen size has 15 spec values ranging from 4.7‘‘ to 6.8’’. The screen
esolution and screen type are ordinal variables with three classes. The
PU speed has 12 specs between 1.4 GHz and 2.8 GHz. The CPU count
eans the number of cores, and the specs include Quad-core, Hexa-

ore, and Octa-core. Regarding the memory feature, RAM has 7 specs
etween 1.5 GB and 12.0 GB, and ROM has 6 specs ranging from 16 GB
o 1 TB. The front camera has 11 specs between 2 MP and 32 MP. The
ear camera also has 11 specs between 5 MP and 108 MP. The battery
apacity ranges from 1821 mAh to 5260 mAh with 29 specs. Finally,
he price ranges from $109.99 to $949.99 with 56 specs. For each of
hese spec values, the mean SHAP was calculated. The result will be
iscussed in the following section.

. Result & validation

.1. Result from the NN choice model

Table 5 shows the result from the NN choice model. For each
ub-feature, spec values are presented in ascending order. The corre-
ponding SHAP values are also presented. The specs with positive SHAP
alues are highlighted in blue. As mentioned in Section 3.3, the SHAP
alue represents the influence of the spec value on customers’ choices.
herefore, the highlighted values show the range of specifications rec-
mmended for product design. These ranges have two types of design
mplications, linear and nonlinear.

First, the NN model provides linear design implications for the
creen size, CPU speed, battery capacity, screen resolution, CPU count,
nd ROM. As shown in Table 5, spec values are divided into two
roups in each of these features. For the screen size, the group with
igher spec values has a positive influence on customers’ choice. For
he CPU speed, the group with lower specs has a positive effect on the
ustomer’s decision. In the same manner, the other four features show
he customers’ preferences for higher/lower specs.

The NN choice model provides nonlinear design implications as
ell. In Table 5, the front and rear camera, price, screen type, and
7

AM have a nonlinear relationship with the customer’s choice. There
s no distinct trend, e.g., the higher, the better, or the lower, the
etter. Instead, a set of preferred spec values is identified. Regarding
he camera, the recommended specs are {5, 8, 25} MP for the front
amera and {12, 108} MP for the rear camera. The low specs (5, 8 MP
ront, 12 MP rear) would be proper for the low-mid-tier smartphones,
nd the high specs (25 MP front, 108 MP rear) would be appropriate
or the flagship models. Regarding RAM, the recommended specs are
1.5, 2.0, 3.0, 12.0} GB. In the same context, 12 GB would be for
he high-tier smartphones, and the others would be for the low-mid-
ier products. In the price column, the middle range has a positive
nfluence on customers’ choices. In specific, the $208.99 - $749.00
ange is recommended. All prices with a positive SHAP value fall within
his range. And all prices outside of this range have a negative SHAP
alue.

.2. Validation

The resultant spec guidance is validated by two approaches: (i)
ompares the design implications from the NN choice model and the
revious MNL model; (ii) compares the result with design insights from
ustomer reviews.

Table 6 shows the MNL result. All sub-features extracted from
ustomer review data are significant factors with P-values less than
.05. Design implications are drawn from coefficients. The coefficient’s
ign implies customers’ tendency for the feature, and the magnitude
f the coefficient indicates how much influence the feature has on the
roduct’s utility. Based on Table 6, it is recommended to decrease the
pec values of the CPU speed, rear camera, battery capacity, and price.
or other features, higher spec values are recommended. As explained
n Section 5.1, the NN choice model provides both linear and nonlinear
esign implications. And the linear implications are consistent with that
f MNL. Specifically, the NN model in Table 5 implies that customers
refer higher specs for the screen size, screen resolution, CPU count,
nd ROM. The MNL result has positive coefficients for all these features.
or the CPU speed and battery capacity, the NN model implies that
ustomers prefer lower specs. And the coefficients for these features
ave negative values in the MNL model. Although two models tell the
ame tendency, the NN model has an additional benefit. It provides a
ower or upper bound for spec decisions. For example, when a company
as a tight budget, it may want to select the minimum spec without
ompromising customer satisfaction. Then, the company can choose a
.1" screen component and 128 GB ROM because they are the lowest
pec values with the positive SHAP value, as shown in Table 5.

The NN model also provides non-linear preferences for spec values,
nd this gives novel design implications. For example, in MNL, the
egative coefficient for the price implies that the lower the price,
he better. However, the NN result shows that too low prices have

negative effect on customer choice. In addition, it provides recom-
ended price ranges with specific numbers. This spec guidance cannot

e obtained from the previous choice models. The practical application
f these novel design implications will be discussed in Section 6.

Another approach for validation is to compare the result with
esign insights from customer opinions. Table 7 shows the reviews
entioning three sub-features (screen size, battery capacity, and price).

or each sub-feature, 100 reviews were randomly selected, and then
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Table 5
NN choice model result.

Screen size CPU speed Camera front Camera rear Battery cap Price

Spec SHAP Spec SHAP Spec SHAP Spec SHAP Spec SHAP Spec SHAP

4.7 -0.233 1.4 0.437 2 -0.008 5 -0.015 1821 0.633 109.99 -0.053
5.0 -0.190 1.6 0.276 5 0.018 8 -0.014 1960 0.631 119.99 -0.058
5.5 -0.116 1.7 0.235 7 0.000 12 0.007 2600 0.150 124.96 -0.135
... ... 1.8 0.224 8 0.004 13 -0.001 ... ... ... ...
5.8 -0.046 2.0 0.110 10 -0.005 16 -0.005 3179 0.112 361.99 0.004
6.0 -0.010 2.1 0.022 12 -0.003 24 -0.022 3300 0.093 399.95 0.019
6.1 0.027 2.2 0.013 13 -0.014 25 -0.011 3340 -0.013 409.00 0.025
6.2 0.042 2.3 -0.013 16 -0.005 32 -0.042 3400 -0.011 421.78 0.003
... ... 2.4 -0.041 20 -0.018 48 -0.034 ... ... ... ...
6.6 0.082 2.5 -0.084 25 0.006 64 -0.022 5000 -0.369 835.99 -0.129
6.7 0.118 2.7 -0.110 32 -0.008 108 0.014 5020 -0.334 849.99 -0.030
6.8 0.078 2.8 -0.141 5260 -0.394 949.99 -0.098

Screen resol Screen type CPU count Memory RAM Memory ROM

Spec SHAP Spec SHAP Spec SHAP Spec SHAP Spec SHAP

1 -0.136 1 0.037 4 -0.123 1.5 0.051 16 -0.093
2 0.000 2 -0.045 6 -0.012 2.0 0.023 32 -0.046
3 0.115 3 0.023 8 0.007 3.0 0.004 64 -0.019

4.0 -0.010 128 0.025
6.0 -0.012 256 0.108
8.0 -0.007 1024 0.310
12.0 0.025
Table 6
MNL result.

Product attribute Coefficient

Screen size 1.008
Screen resolution 0.809
Screen Type 0.687
CPU speed −1.316
CPU count 0.029
Memory RAM 0.025
Memory ROM 0.028
Camera rear −0.027
Camera front 0.017
Battery capacity −0.247
Price −0.018

* All coefficients of product attributes are significant
for the MNL model.

Table 7
Reviews for sub-features.

S_size ‘‘This phone is way better than my Samsung 7 - much
better performance, bigger screen and [...]’’
‘‘I also love that this phone is relatively lightweight
(even with a ballistics case), and has a large screen.’’

B_cap ‘‘Battery life is amazing due to the big 4000 mah’’
‘‘Battery capacity is not enough as described. About
5 h for screen on time.’’
‘‘It’s not the biggest battery but it still gives me 18 to
20 h standby time.’’

Price ‘‘Nice price for the combo that came with the wireless
charger and Samsung earbuds.’’
‘‘The screen quality is really good for the price.’’
‘‘Graphics is out dated. At a certain point it stops
letting you download apps. Don’t waste your money
spring for something that technically advanced.’’

the context of each review was manually analyzed by the authors.
Regarding the screen size, 70% of the customers show their preferences
for the larger screen. 24% talk about the screen size, but they do
not specify larger/smaller ones. The remaining 6% prefer the smaller
screen. This result shows that most customers want to purchase a smart-
phone with a larger screen, which matches the spec guidance shown
in Table 5. Regarding the battery, the spec guidance recommends a
8

Table 8
Prediction accuracy (5-Fold Validation).

MNL NN

Random Sampling 66.61% 72.45%
Normalized Sampling 59.08% 64.36%

smaller capacity. It may seem unmatched with the common percep-
tion that customers prefer a larger battery. Customer opinions in the
review data can explain this. Among all the reviews about the battery
capacity, 100 items were randomly selected and analyzed. Half of them
are concerned about battery health since they purchased refurbished
products. The other half express their opinion on the battery size. As
shown in Table 7, most of them care about usage time rather than the
capacity itself. It implies that customers are satisfied with the small
battery capacity if it provides decent usage time. This study does not
include the spec values for battery life because the data is missing for
some products. Unlike component specs, battery life is measured by
simulations such as talk time and video play. So, it is hard to collect
for all products. Further analysis of the battery life will be conducted
in future research. The review analysis also explains the non-linearity
in design implications. Among the reviews about price, 12% express
satisfaction with renewed products due to the lower price than new
ones. 7% complain about issues such as refunds. In the remaining 81%,
most reviews evaluate the price based on the product specs, as shown
in Table 7. They are satisfied with the product not because it has the
lowest price but because it has reasonable specs for the given price.
In the same context, reviewers give negative feedback for low-priced
products when their specs do not meet the expectations. Therefore, it
can be expected that customers do not prefer very cheap products due
to their out-of-date specs. This preference is captured by the proposed
method in Table 5, while MNL in Table 6 cannot capture it.

6. Discussion

6.1. Model evaluation

In Section 5, the nonlinear relationships between product attributes
and customer choice are explained. Not only do they provide spec
guidance for product design but also they contribute to higher pre-
diction accuracy. Table 8 shows the prediction accuracy of the MNL
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Fig. 8. Confusion matrix (NN, Random sampling).

and NN model based on 5-fold validation. For both sampling methods,
the NN model provides better performance than MNL. Although the
resultant accuracy seems lower than in other cases, it can be accepted
considering the output type. The models with binary outputs (Onchis
and Gillich, 2021; Lee et al., 2022) show 80–90+% of accuracy. On
the other hand, those predicting multiple classes (Giabelli et al., 2022;
Pan and Stark, 2022) provide 60–70+% accuracy. The proposed model
predicts customers’ choices among three alternatives. In this case, the
guess is 33%, and the current result shows accuracy much higher than
the guess. We will continue discussing the accuracy of the model in
Section 7.

The performance of the NN model is further analyzed by a confusion
matrix, as shown in Fig. 8. It contains all results from 5-fold validation.
The percentage on the matrix represents True Positive (TP) and False
Negative (FN). TP means that the case is predicted as positive and is
actually positive. FN is the incident that is predicted as negative but
is actually positive. By the definition of TP and FN, the values are
calculated row-wise. In Fig. 8, the diagonal values represent TP since
the predicted labels are the same as the actual labels. Off-diagonal
values denote FN. Specifically, [row 1, column 2] shows the case where
customers are predicted to choose option 2 when they actually purchase
option 1. Similarly, [row 2, column 1] shows the case where customers
are expected to select option 1, but they actually buy option 2. The
confusion matrix shows that the NN choice model provides the same
level of accuracy for all classes.

6.2. Managerial application

In product design, there exist correlations among design factors such
as components, product dimensions, and cost. For example, in smart-
phone design, the battery capacity is dependent on the display size and
product volume. And battery cost is determined by the battery capac-
ity. There are also physical restrictions to be considered. Specifically,
smartphone thickness cannot keep decreasing because it affects the
surface temperature and thus the performance of core processors (Kang
et al., 2019). Ergonomic evaluations (Lee et al., 2019) restrict product
dimensions. They cannot be too small or too large to ensure comfort
in the grip. In practical applications, product design is formulated
as an engineering design optimization (EDO) problem (Gowharji and
Whitefoot, 2021; Shiau et al., 2007). The above factors – correlations
and physical restrictions – are included as constraints. Solving the
problem gives an optimal design or design alternatives. However, there
is no guarantee that customers will prefer or accept the resultant
design solution. For instance, the EDO problem may result in different
dimension options with a 6.0" screen and 3500 mAh battery. According
to Table 5, customers prefer a screen size ≥ 6.1" and battery capacity
≤ 3300 mAh. Then, the solution is not a preferred design, although
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it is a feasible design satisfying all the restrictions. This issue can be
addressed by including the spec guidance

The spec guidance provides upper/lower bounds of spec ranges and
discrete spec values preferred by customers. This guidance will change
the EDO problem by replacing previous constraints or adding new ones.
Consequently, the feasible design space changes, and active constraints
change too. Those related to spec ranges will be active to preserve the
recommended spec values, and previously active ones may be lifted.
It will result in new solutions with different product dimensions and
spec values. In this way, the spec guidance obtained in this study can
help companies design a product with spec configuration preferred by
customers.

7. Conclusion & future works

Recently, online data has become a popular resource for consumer
product design research. Many studies have been utilizing online data
to understand customers and extract design implications. However,
most of them focus on customers’ tendency for product features, which
is insufficient for industrial applications. Since a product consists of
multiple components, a company needs information about product sub-
features and spec ranges. The previous studies give implications for
product feature categories, not sub-features. Moreover, the implications
are about the customer’s tendency for the features, not the range of sub-
feature specs. This research addresses the above problem by extracting
product spec guidance from online data.

The suggested approach consists of three stages. The first stage is
constructing customer choice sets based on data mining. The method
identifies sub-features mentioned in customer reviews and collects
specifications for them. Then, customer choice sets are constructed
based on the random and normalized sampling method (Suryadi and
Kim, 2019). In the second stage, the method transforms these choice
sets into one-dimensional arrays for NN input. Then, an NN choice
model is trained based on these choice set arrays. In the final stage,
the resultant NN model is interpreted by SHAP. The obtained SHAP
values are further analyzed by the method proposed in this study. The
presented approach was tested on smartphone products, and the result
provides novel design implications for engineering design. Specifically,
the recommended spec range for each sub-feature is obtained.

In future works, the limitations of the proposed approach will be
addressed. First, this study provides spec guidance for only existing
features. When designing a new product, companies make decisions
on both new features and existing features. For example, in iPhone X,
Apple introduced a new technology for security. The company removed
the fingerprint sensor and installed the Face ID function. At the same
time, the company fixed the spec configuration of the basic features
such as screen, memory, and battery. This study helps companies
determine these existing features. But guidance for new features is
also necessary for product design. In future works, we will address
this limitation by including new features in product attributes. Also,
we plan to improve the feature extraction part by adopting state-of-
the-art NLP techniques such as BERT (Devlin et al., 2018). Including
domain knowledge in the data analysis process (Fantoni et al., 2021)
is a possible approach for the dataset with technical terms. It can
help further analysis on review data to extract reasons behind cus-
tomer preference for certain spec values. In Section 5, text analysis
on review data discovered that customers use ‘battery capacity’ for
different contexts. This word sense disambiguation can be solved by
BERT, enabling more precise text analysis. Based on the analysis result,
additional data such as battery life will be included in spec guidance.
Another limitation is that the current result provides somewhat lower
accuracy than in other cases, as discussed in Section 6.1. To improve
the accuracy, we tested different NN structures, including feedforward
neural networks (FFNN) with multiple hidden layers, recurrent neural
networks (RNN), and convolutional neural networks (CNN). The result
is presented in Table C.11 in Appendix C. FFNN with multiple layers



Computers in Industry 144 (2023) 103790S. Park et al.
Table A.9
Product attributes.

Main Sub Unit

Screen Size Inch
Resolution HD = 1, FHD = 2, QHD = 3
Type TFT = 1, IPS = 2, OLED = 3

CPU Speed GHz
Count

Memory RAM GB
ROM GB

Camera Rear MP
Front MP

Battery Capacity mAh
Price USD

Table B.10
Hyperparameters for NN.

Parameter Option

Epochs 200, 300, 400, 500
Batch size 20, 50, 100
Optimizer SGD, RMSprop, Adagrad, Adadelta,

Adam, Adamax, Nadam
Learning rate 0.0005, 0.001, 0.005, 0.01, 0.05
Initializer uniform, lecun_uniform, normal,

zero, glorot_normal, glorot_uniform,
he_normal, he_uniform

Hidden layer size 30, 50, 80, 100

resulted in slightly lower accuracy than SNN adopted in this study, RNN
provides the accuracy around 57%, and CNN gives the average accu-
racy of 72%. Although no improvement was observed in the current
test result, different NN architectures other than the listed may enhance
the prediction accuracy. We will work on new structures for NN to
improve the model performance. The enhanced accuracy will increase
the reliability of this research. Lastly, this study has a limitation in that
it mines historical data for new product design. Due to the nature of the
data, the method cannot identify radical innovations in the market that
are very different from the past. It is a common drawback of research in
data-driven design based on user-generated data, and new techniques
for radical innovation may be developed in future works.
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Appendix A. Appendix 1

Table A.9 shows the description for product attributes.

Appendix B. Appendix 2

Table B.10 shows the hyperparameters tested in the grid search.

Appendix C. Appendix 3

Table C.11 shows the prediction accuracy of different NN structures.
The NN was implemented by the keras library in PYTHON (keras.layers
- LSTM/ GRU, keras.applications - DenseNet121/ ResNet50/ Incep-
tionV3/ VGG16) The result is based on the 5-fold validation.

The results provide consistent accuracy according to their architec-
tures, i.e., FFNN, RNN, and CNN. One exception is VGG16. Although
10
Table C.11
Prediction accuracy.

Model Accuracy

FFNN (H = 1) 72.45%
FFNN (H = 5) 72.39%
FFNN (H = 10) 71.64%

GRU 56.55%
LSTM 56.54%

DenseNet121 72.22%
ResNet50 72.10%
InceptionV3 72.05%
VGG16 32.83%

Table C.12
Prediction distribution of VGG16.

Class 1 2 3 Total

Number of predictions 3947 3932 4121 12000

33% 33% 33%

the prediction is evenly distributed among three classes, as shown in
Table C.12, the resultant accuracy is very low (32.83%). It is probably
because the number of training sets is insufficient for VGG16. While
the other CNN models have parameters ≤ 25.6M, VGG16 has much
more parameters of 138.4M (Keras, 2022). So, it requires a much larger
sample size for training.
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