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Data-Driven Decision Tree
Classification for Product
Portfolio Design Optimization
The formulation of a product portfolio requires extensive knowledge about the product
market space and also the technical limitations of a company’s engineering design and
manufacturing processes. A design methodology is presented that significantly enhances
the product portfolio design process by eliminating the need for an exhaustive search of
all possible product concepts. This is achieved through a decision tree data mining
technique that generates a set of product concepts that are subsequently validated in the
engineering design using multilevel optimization techniques. The final optimal product
portfolio evaluates products based on the following three criteria: (1) it must satisfy
customer price and performance expectations (based on the predictive model) defined
here as the feasibility criterion; (2) the feasible set of products/variants validated at the
engineering level must generate positive profit that we define as the optimality criterion;
(3) the optimal set of products/variants should be a manageable size as defined by the
enterprise decision makers and should therefore not exceed the product portfolio limit.
The strength of our work is to reveal the tremendous savings in time and resources that
exist when decision tree data mining techniques are incorporated into the product port-
folio design and selection process. Using data mining tree generation techniques, a
customer data set of 40,000 responses with 576 unique attribute combinations (entire set
of possible product concepts) is narrowed down to 46 product concepts and then vali-
dated through the multilevel engineering design response of feasible products. A cell
phone example is presented and an optimal product portfolio solution is achieved that
maximizes company profit, without violating customer product performance expectations.
�DOI: 10.1115/1.3243634�
Introduction
The emergence of highly competitive markets in the global
arketspace has forced companies to reevaluate strategies in en-

uring sustainable business endeavors. Attempts to satisfy a wide
rray of customers quickly and efficiently have led to the concept
f product customization, wherein enterprise decision makers
trive to better cater to the needs of their customers through a
ider array of products to choose from �1�. While this approach is
eneficial to the consumer, such design and manufacturing deci-
ions can lead to adverse effects from a manufacturing, distribu-
ion, and marketing cost standpoint. Companies continue to place
high premium on the methodologies needed to ensure that mass

ustomization decisions lead to increased or, at the very least,
onsistent profit margins.

Attempts to mitigate the added costs of mass customization are
n part achieved through the product family paradigm �2�, wherein
roducts that satisfy the individual product functionality require-
ents dictated by customer preference are designed around a

hared and efficient product architecture. The term product archi-
ecture is frequently defined as the set of modules/components
herein product variants evolve �3–6�. Commonality among
roduct variants can translate into lower manufacturing costs as-
ociated with highly differentiated products through economies of
cale �7,8�. The challenges facing enterprise decision makers in
he product portfolio development process are multifaceted and
nclude identifying candidate product concepts that have the great-
st probability of market success. Attempts to search every pos-
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sible product concept may be impractical in real life design pro-
cesses, especially when first to market may create tremendous
competitive advantages in the market space.

Our approach to product portfolio formulation takes large data
sets of customer preference data and extracts meaningful product
attribute information to help guide the actual product design and
development process. The overall objective of maximizing com-
pany profit is realized when a feasible set of product variants is
presented in the final solution process. The reduction in resources
in this limited and highly efficient narrowing of product concepts
will be demonstrated through a cell phone example, where an
entire product concept generation space of 576 �exhaustive com-
bination of product attributes� product concepts is narrowed to
only 46 through a decision tree data mining approach. The gener-
ated product designs are then subsequently tested for engineering
feasibility. This is formulated as a multilevel optimization prob-
lem, where the generated predictive product concepts are first
translated into functional specifications and set as targets at the
engineering level for design validation. A feasible product design
is therefore defined as one in which all customer preferences are
satisfied, without violating engineering design constraints.

This paper is organized as follows. This section provides a brief
motivation and background. Section 2 describes previous works
closely related to the current research. Section 3 describes the
methodology. The methodology is demonstrated in Sec. 4 through
a cellular phone portfolio design example. Section 5 presents the
results and discussion. Section 6 concludes the paper.

2 Related Work

2.1 Customer Knowledge Acquisition Approaches. There
are several well established methods for translating customer re-
quirements into tangible engineering design targets in the product

development process. We will briefly review several well known

ring DECEMBER 2009, Vol. 9 / 041004-1
09 by ASME

E license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



a
t
i

p
a
k
f
c
v
t
r
t
p
m
t
d
o
e
a
�
m

s
b
p
p
�
u
i
t
t
h
i
h
p
a
u
d
i

�
f
�
w
p
e
f
a
o
m
p
s
�
q
a
m
o
i
t
D

d
t
t
p
m

0

Downloa
pproaches in Secs. 2.1.1–2.1.3, and in Sec. 2.1.4, we highlight
he strengths of data mining as an alternative approach for acquir-
ng customer product requirements.

2.1.1 Quality function deployment. The quality function de-
loyment �QFD� is a design and development methodology that
ttempts to acquire customer requirements �CRs� otherwise
nown as the voice of the customer �VOC� and translate them into
unctional engineering targets �9�. A conventional approach to
ustomer requirement acquisition is through focus group inter-
iews or conducting surveys of a sample of current or future cus-
omers �10�. Corresponding weights are assigned to each customer
equirement based on an importance rating indicated by a cus-
omer �11,12�. A QFD matrix is often used to depict the interde-
endence between customer requirements and the engineering
etrics �EMs� and to aid in brainstorming and designing the op-

imal product to address customer needs. QFD driven product
evelopment methodologies suggest that QFD is well suited for
ut of the box solutions to customer needs due to the fact that
ngineering design features are evaluated based on their positive
nd negative contributions to solving the product design problem
9�. The design of the QFD matrix also makes it easier to bench-
ark a particular design solution against competing brands.

2.1.2 Conjoint analysis. Conjoint analysis �CA� has been used
uccessfully in marketing to determine how customers value com-
inations of different product attributes/features �9�. In this ap-
roach, a target customer group is identified for the study and
resented with a set of attributes �survey format or prop cards
13��, each with different levels �attribute ranges� �14�. Part-worth
tilities are estimated based on customer importance ranking of
ndividual product attributes. The resulting utility function is used
o evaluate customer preferences for different attribute combina-
ions. Although conjoint analysis application areas can range from
uman psychology to advertising, attempts to directly incorporate
t into engineering design optimization and product development
ave been investigated �15–18�. These conjoint analysis based
roduct development methodologies highlight the ability of the
pproach to quantify specific product attribute levels in new prod-
ct development. However, this approach is primarily survey
riven and therefore as the attribute space becomes large, preserv-
ng the quality of the model becomes a challenge.

2.1.3 Discrete choice analysis. Discrete choice analysis
DCA� is the modeling methodology of consumer choice behavior
rom a set of mutually exclusive collective exhaustive alternatives
19�. DCA incorporates probabilistic choice theory in determining
hich product a customer is most likely to choose based on ex-
ected utility �20�. In engineering design and development, mod-
ling product demand can therefore be based on a customer utility
unction model that incorporates unknown parameter estimates
nd unobservable customer utility components �21–23�. Instances
f discrete choice analysis include the probit model and logit
odels �multinomial, mixed, nested, etc.� to name but a few. In

roduct development, applications are focused on creating con-
umer choice models either through stated or revealed data
23–26�. Many of these studies reveal the strengths of DCA in
uantifying the market share of different brands of products given
set of attributes. The DCA model presents enterprise decision
akers and design engineers with relevant probability measures

f choosing one product over another based on product character-
stics. A challenge of using DCA that is reported in the literature is
hat of multicollinearity, where it becomes difficult to generate a
CA model due to the presence of highly correlated attributes.

2.1.4 Data mining and knowledge extraction in product
evelopment. A few fundamental differences between data mining
echniques and those discussed in Secs. 2.1.1–2.1.3 are that unlike
he QFD and CA techniques that are highly dependent on stated
reference data acquired through close customer interaction, data

ining applications can also deal with revealed preference data
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�real customer purchase behavior that is captured through pur-
chase transactions �in-store, online, etc.� �26�. The absence of the
direct customer interaction constraints allows larger data sets to be
analyzed through data mining techniques that, in turn, may more
accurately reflect the individual preferences of a wider array of
customers. In relation to attribute importance, both the QFD and
CA extract attribute importance �or relevance� by either requiring
customers to rank individual product attributes or rank product
concepts as a whole. This added requirement to rank product al-
ternatives or attributes may also limit the size of the data set that
can be analyzed or the speed and efficiency by which new prod-
ucts can be designed. In the predictive data mining technique
presented in this work, customers are not required to rank product
alternatives or attributes. Instead they are only required to select
the combination of attributes and price that most closely meet
their needs. Product attribute importance is therefore identified
during the decision tree model generation by employing the gain
ratio attribute evaluation metric discussed later in Sec. 3.1.3.
Therefore no prior attribute ranking is assumed or required.

The incorporation of data mining techniques in product portfo-
lio development is emerging as a well-founded approach to ex-
tracting and analyzing relevant customer information. Kusiak and
Smith highlighted several key areas in industrial and manufactur-
ing design processes, where data mining techniques could poten-
tially have great benefits �27�. In the context of product portfolio
development, the application of data mining clustering techniques
in the design of modular products has also been investigated.
Moon et al. used data mining to represent the functional require-
ments of customers and used fuzzy clustering techniques to deter-
mine the module composition of a product architecture �1�.

Nanda et al. proposed a product family ontology development
methodology �PFODM� that utilizes a formal concept analysis
approach in the design of product families �28�. This approach
incorporates existing knowledge of the product family in generat-
ing a hierarchical conceptual clustering of design components.

Data mining predictive techniques are investigated by Tucker
and Kim to extract knowledge from large customer product pref-
erence data sets. This approach incorporates customer input at the
early stages of the design process by directly integrating customer
predictive preferences with engineering design through a data
mining Naive Bayes predictive technique �29�.

The decision tree generation approach that we adopt in this
work presents an enterprise decision maker with product concepts
that are determined to be the best indicators for market success
�20�. This prediction is based on the C4.5 machine learning algo-
rithm that predicts a certain class variable by selecting a particular
customer attribute combination that are the best predictors �based
on the C4.5 algorithm discussed in Sec. 3.1.3 of this particular
class variable� of a particular class value �30,31�. The speed and
efficiency of the C4.5 algorithm, together with the ease of inter-
preting the decision tree structure make this data mining approach
suitable for the product design scenario that we present in this
work.

2.2 The Concept of Novel Previously Unknown Customer
Information. The term product concept that we define in this
work relates to the notion of novel previously unknown customer
information that data mining is well known for �32–34�. To illus-
trate this concept, we present a simple test data set represented in
Table 1. The data set contains six customer attributes �columns
1–6� with one predictor variable �Class variable in column 7�.
Based on the attribute values in Table 1 of Feature, Priority, Type,
Connectivity, Battery Life, and Display, there are a total of
3 ·2 ·2 ·3 ·3 ·2=216 possible unique combinations �although only
10 out of the 216 combinations exist in the sample data in Table
1�. Two fundamental questions arise from our observation.

• How can we determine novel attribute combinations without
performing additional data acquisition procedures �customer

surveys, focus groups, etc.�?
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• How efficiently can we extract these new attribute
combinations?

The term novel in our work relates to information that is not
eadily observable or not explicitly defined within the data set but
an be quantified through the proposed decision tree induction
echnique. The following product design question aims to illus-
rate how novel information can be extracted from a raw data set.

• Given a specific attribute combination not existing within
the data set �for example, referring to Table 1 in the paper,
we observe that the combination of �Games, Weight, Flip,
Bluetooth, 5 h battery, ScreenSize� does not exist within the
data set�.

1. What price category �MaxPrice� would the above attribute
combination fall under?

2. Are all of these attributes needed to predict the price cat-
egory? That is, if we include only a subset of the attribute
space �Games, Weight, and Flip� instead of the entire at-
tribute space �Games, Weight, Flip, Bluetooth, 5 h battery,
and ScreenSize�, would it still result in the same price cat-
egory �MaxPrice� prediction?

The case study example in Sec. 4.1.1 helps address these ques-
ions. For example, the decision tree structure in Fig. 2 reveals
hat for the Games phone, as long as the product also includes
luetooth connectivity and a 5 h battery life, we would result in a
redicted price of $120. Therefore if design engineers were aim-
ng to design the next generation of Games phones to a customer

arket segment willing to pay $120, then these product attributes
ould make up the primary product architecture.
Another example of attribute knowledge discovery can be ob-

erved in Table 1. If we were to design a camera phone product,
e see from rows 5 and 6 that both Camera phones, each with

Table 1 Example data

Feature Priority Type Connectivi

MP3 Cost Flip Bluetooth
MP3 Weight Flip Wifi
MP3 Weight Flip Bluetooth
MP3 Cost Shell Infrared
Camera Weight Shell Wifi
Camera Weight Flip Wifi
Games Cost Flip Bluetooth
Games Cost Shell Wifi
Games Weight Flip Infrared
Games Cost Flip Bluetooth

Table 2 Test data for

Feature Priority Type Connectivi

Bra
MP3 Cost Flip Bluetooth
MP3 Weight Flip Wifi
MP3 Weight Flip Bluetooth
MP3 Cost Shell Infrared

Bra
Camera Weight Shell Wifi
Camera Weight Flip Wifi

Bra
Games Cost Flip Bluetooth
Games Cost Shell Wifi
Games Weight Flip Infrared
Games Cost Flip Bluetooth
ournal of Computing and Information Science in Enginee

ded 04 Jun 2010 to 128.174.193.86. Redistribution subject to ASM
slightly different attribute combinations yield a purchase price of
$120. However, based on the C4.5 algorithm �explained in Sec.
3.1.3�, we observe that no additional attributes are needed to yield
a Camera phone price of $120 �see the initial partitioning in Table
2�, therefore from a product design perspective, no additional re-
sources should be invested in improving additional design features
that do not significantly influence the purchase decisions of a
customer.

This type of information is not readily observed in the raw data
set and will enable design engineers to design the next generation
of Games and Camera phones by including only the relevant at-
tributes along with their predicted attribute levels. Such insights
have the potential to save on manufacturing and materials costs,
as well as on the time and efficiency of the product design
process.

The term product concepts used in this work therefore repre-
sents attribute combinations within the data set �some of which
may not appear in the raw data set� that are generated by the C4.5
predictive model �31,35�. Herein lies one of the fundamental
strengths of data mining as opposed to the other customer data
collection techniques presented in Sec. 2.1 in that inferences can
be made on attribute combinations not readily available in the raw
data set without additional customer interactions.

The underlying structure of the C4.5 decision tree algorithm
allows us to quantify such hidden patterns within the raw data set.
We discuss the theoretical aspects of the C4.5 decision tree algo-
rithm in Sec. 3.1.3 and demonstrate how the classification proce-
dure employed by the algorithm has the potential of classifying
novel, previously unknown attribute combinations �31,36�.

Note: the data set of 40,000 customer responses used in the case
study in Sec. 4 has the same attributes as those found in Table 1;
however, since it is the complete data set, all of the attribute
values are present in the data set. For example, the Feature at-

of customer attributes

Battery life Display MaxPrice

5 Screen size 200
3 Screen size 160
3 Resolution 160
5 Screen size 80
3 Screen size 120
3 Resolution 120
5 Resolution 200
7 Resolution 200
5 Screen size 160
3 Screen size 160

ision tree generation

Battery life Display MaxPrice

1
5 Screen size 200
3 Screen size 160
3 Resolution 160
5 Screen size 80

2
3 Screen size 120
3 Resolution 120

3
5 Resolution 200
7 Resolution 200
5 Screen size 160
3 Screen size 160
set
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ribute has 6 levels in the data set of 40,000, but since we used a
ample in Table 1 for illustrative purposes, all 6 values of the
eature attribute do not show up.

Methodology
The entire product portfolio generation process is divided into

wo phases. Phase 1 is the customer knowledge discovery pro-
ess, which entails customer data acquisition, processing, and data
ining for feasible set generation. Phase 2 involves the product

oncept validation through multilevel optimization and finishes
ith a product portfolio selection. Figure 1 shows the overall flow
f this process �the general flow on the left and the detailed flow
n the right of Fig. 1� starting with customer data acquisition and
nding with enterprise portfolio selection. The details of the meth-
dology are presented as follows.

Fig. 1 Overall flow of produc
Fig. 2 C4.5 decision tree solution

41004-4 / Vol. 9, DECEMBER 2009
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3.1 Phase 1: Customer Knowledge Discovery. Knowledge
discovery in databases �KDDs� has become known as the non-
trivial means of extracting information in large scale databases
that were previously too complex for human analysis �37�. Data
mining techniques utilize classification algorithms to extract
meaningful previously unknown information from large data sets
�33�. The concept of data mining can be applied to product port-
folio formulation, wherein the exact product specifications and
manufacturing quantity �predicted demand information for each
individual product concept� can be determined directly from data
mining predictions. The process from data extraction to predictive
model is as follows.

3.1.1 Data acquisition. The acquisition and storage of data are
paramount in the product portfolio formulation process. We first
begin by acquiring the raw data set to be used in the data mining

ortfolio optimization process.
for 40,000 customer data set
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equence. This data can be acquired in several ways. One ap-
roach is by conducting a realistic customer survey to capture
hat customers want and then translating these wants into mean-

ngful engineering design targets �38�. Another approach would be
or this data to already exist in a data warehouse, i.e., stored data
rom past customer purchasing behavior �e.g., Structured Query
anguage server �SQL�� �39�. To increase the predictive capabili-

ies of a classifier, it is often encouraged that the data set be large
nough to accurately test the generated model with a portion of
he data set.

3.1.2 Data preprocessing: data selection, cleaning, and
ransformation. The data preprocessing stage is where irrelevant
r noisy data are identified and removed, and relevant data are
xtracted from the raw data �39�. There are many well established
pproaches that deal with missing attributes or ambiguous re-
ponses ranging from the most common attribute, event covering
ethod, or ignoring the value altogether �40–42�. When dealing
ith electronic transactional data �online and in-store�, it is then
ossible to collect, clean, and store these data in a data ware-
ouse. A data warehouse is a preprocessing stage that integrates
ll data into one source �this includes raw data, historical data,
ummarized data, etc.� �43�. The accuracy of the data mining
odel will be highly dependent on the data selection and cleaning

tep, and it is therefore important that considerable time be allo-
ated to preparing high quality data for the pattern discovery step
hat follows. There are many algorithms that exist in today’s data

ining analysis tools that are now capable of incorporating this
ata selection and cleaning process directly with the overall
nowledge discovery process �44,45�. The final data preprocess-
ng step involves transforming the data into acceptable forms for
he appropriate mining algorithm. Data transformations can in-
lude binning, normalizing, missing value imputation, etc. �46�.
his can either be done manually by the user or automatically by

he analysis tool �45�.

3.1.3 Pattern discovery. First a particular algorithm is selected
nd for the predictive analysis for our cell phone architecture de-
ign, we have opted to incorporate the C4.5 machine learning
lgorithm to generate a set of attribute combinations suitable for
ngineering design evaluation. Each unique attribute combination
hat predicts a class variable will be considered a candidate prod-
ct concept. Typically, data mining techniques utilize 2/3 of the
aw data to train the machine and the remaining 1/3 to test the
odel developed. The N-fold cross validation technique selects

nd compares several test models with one another and selects the
ppropriate model that best predicts the class variable �45�. The
4.5 machine learning algorithm for generating these product
oncepts is described more in detail below.

3.1.3.1 Product concept generation using C4.5 machine
earning algorithm. Our approach to product concept generation
dopts the C4.5 data mining tree generation technique first pro-
osed by Quinlan �30�. The algorithm is based on the divide and
onquer �31,30� technique that decomposes a set of training cases
with class variables �C1 ,C2 , . . . ,CN� until the partitioning yields
collection of cases that predicts a single class variable Ci. Each

ubsequent decomposition of the tree tests a single attribute that
as outcomes �O1 , . . . ,OP� that are mutually exclusive to one an-
ther �31�. When applied to product portfolio optimization, the
lass variable can be thought of as the overall performance criteria
determined by the enterprise decision maker� influencing product
aunch decisions. The class variable selected by the enterprise
ecision maker can range from a Price metric �later to be demon-
trated in our cell phone example� to a Weight or Dimensionality
etric, etc.
The manner in which attributes are selected during each stage

f tree decomposition is the fundamental strength of the C4.5

lgorithm and the primary reason why this data mining technique

ournal of Computing and Information Science in Enginee
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is so successful when applied to the product portfolio paradigm.
The term attribute can be thought of as the quantifiable product
requirements of a customer. Examples of attributes may be mini-
mum fuel economy expectations �miles per gallon� in the context
of automotive design or the battery life expectations of a hand
held device. The tree termination criterion eliminates the need for
an exhaustive search of all possible attribute combinations, and
when applied to multilevel optimization formulation in product
development, significantly improves on the time and efficiency of
developing a portfolio of products �Demonstrated later in our cell
phone example�.

3.1.3.2 C4.5 gain ratio criterion. To avoid an exhaustive
search of all possible attribute combinations, a systematic ap-
proach is used to partition the data and to identify what attribute to
split in the most efficient manner so as to gain the most informa-
tion about the class variable. For a given training set T, let us
assume that we want to test a particular attribute that has P pos-
sible outcomes �O1 , . . . ,OP� �31�. If we define S to be any set of
cases �which can either be the entire training set T or a subset of
T�, then the occurrence of a particular class variable Ci can be
denoted by

freq�Ci,S� �1�
This is simply the number of times a particular class occurs in a
given data set. The information gained by splitting a particular
attribute i gets its foundation from classical information theory
that states: “The information conveyed by a message depends on
its probability and can be measured in bits as minus the logarithm
to base 2 of that probability” �30�. If freq�Ci ,S� determines the
number of occurrences of a particular class, then the probability of
randomly selecting this class over the entire set of S cases would
simply be

freq�Ci,S�
�S�

�2�

where �S� represents the total number of cases in the data set S.
Following the definition of information conveyed, the informa-

tion that this particular example conveys can be represented as
�31�

− log2� freq�Ci,S�
�S� 	 bits �3�

It is interesting to note that the range of the class variable C can be
set by the enterprise decision maker depending on the desired
objective of the company. If customer willingness to pay is the
performance metric �Class� to be predicted, then this can be par-
titioned into �C1 ,C2 , . . . ,CN�, that is if the data is obtained
through a direct customer survey approach.

Later in our cell phone example, the primary criterion for se-
lecting one device over the other is the maximum price a customer
is willing to pay for that particular design: MaxPrice, as it is
abbreviated in the example, is therefore the class variable to be
predicted. To measure the average amount of information needed
to identify the class �for example, all values of MaxPrice ranging
from �$40 $80 $120 $160 $200�� of a case in a training set, we
sum the classes relative to their frequencies in the data set �30�

info�S� = − 

i=1

N � freq�Ci,S�
�S� 	 · log2� freq�Ci,S�

�S� 	 bits �4�

Note: T represents the entire set of training cases while S repre-
sents any set of cases within T. Therefore, the above formula can
be used to calculate the information of subsets of T or the entire
data set T. info�T� therefore measures the average amount of in-
formation required to identify the class of a case in T by summing
over the product of all the class probabilities and their informa-
tion, as defined by Eq. �4� �31�. To test the amount of information

gain of a particular attribute, we partition this attribute into its
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espective mutually exclusive outcomes.
After partitioning T into P possible outcomes for a specified

est X �attribute selection�, the expected information requirement
s the summation of all subsets, as given by �47�

infox�T� = 

p=1

P
�Tp�
�T�

· info�Tp� �5�

The gain can therefore be defined as the difference in the total
verage information required to identify a class in the training set
inus the information achieved by testing a particular attribute

35�

gain�X� = info�T� − infox�T� �6�
The above equation itself is an optimization problem, where the

bjective is to maximize the information gain, subject to the con-
traints of the algorithm sequence. Due to the fact that certain
ttributes may have significantly greater outcomes, this metric
lone may not be sufficient as it may skew the predictive capa-
ilities of the algorithm in favor of attributes with greater out-
omes. A more accurate predictor of the information that is gained
y partitioning T is the gain ratio criterion that is defined as �31�

gain ratio�X� =
gain�X�

split info�X�
�7�

here

split info�X� = − 

p=1

P
�Tp�
�T�

· log2

�Tp�
�T�

�8�

he gain ratio represents the proportion of information �i.e.,
caled information� generated by the split that is useful in predict-
ng the class variable �31�.

The partitioning of a problem into subproblems �i.e., generating
oncepts� will be terminated when there is only one class in that
articular branch �31�. Pruning of subsequent branches can occur
f replacing a branch with a leaf will reduce the % error of that
ode and ultimately the entire branch �36�.

3.1.3.3 C4.5 discretization of continuous attributes. The C4.5
lgorithm performs discretization and tree induction concurrently
nd is therefore a function of the information gain metric, rather
han a user defined input �47,48�. For the case of a continuous
ttribute within a given data set �for example, a price or weight
ariable�, a binary split is determined for each attribute based on
inimal entropy criteria �30,49�. More recent contributions to the
4.5 discretization of continuous attributes employ the minimum
escription length �MDL� to help minimize the bias that may be
nherent in the underlying gain ratio criterion explained above.

Since discretization of continuous attributes is handled during
he C4.5 tree generation approach �30,50�, the resulting attribute
ombination represents the most appropriate discretization to pre-
ict the class variable. Since C4.5 discretization is limited to the
ttribute space and does not include the class variable, enterprise
ecision makers may opt to choose a discrete variable to serve as
he class variable. In our cell phone example presented later in the
ork, the class variable represents pricing information gathered

hrough an online interactive customer survey and therefore is
iscrete based on the design of the survey. On the other hand if the
ata set comprises of revealed preference data, such as electronic
tore purchases or online transactions, the pricing information
ay be inherently continuous and can therefore either be dis-

retized during the data mining preprocessing step explained in
ec. 3.1.2 or serve as an attribute in the C4.5 formulation �another
lass variable, such as “purchase phone: Yes or No,” may serve as
he class variable in this scenario�. One also has the option to
mploy other data mining techniques that can handle continuous
lass variables such as M5 Prime �50� or classification and regres-
ion trees �CART� �51�, which could then be applied to other

roduct design scenarios containing continuous class variables.
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3.1.4 Interpretation and evaluation. Phase 1 of the product
portfolio formulation process provides us with three critical pieces
of information vital to the product concept validation process
�Phase 2�.

• Set of candidate product concepts: represented as a unique
combination of customer attributes.

• Class variable prediction: the predicted performance evalu-
ation for product concept �j�. In our example, this is denoted
by MaxPrice.

• Aggregated demand for a particular product concept: repre-
sented by the total supported cases for a particular predicted
class variable �represented as a leaf in the C4.5 decision
tree�.

3.2 Phase 2: Product Concept Validation Through Multi-
level Optimization. The product concepts generated by the C4.5
decision tree data mining technique in Phase 1 need to be vali-
dated to ensure that such performance expectations can be realis-
tically designed. In mathematical terms, we model this as a mul-
tilevel optimization problem and adopt the analytical target
cascading �ATC� �52� multilevel optimization approach �although
the methodology is not limited to the ATC only�. Phase 2 ends
with a portfolio selection decision after feasible product concepts
have been validated by the interactions between the enterprise
level and engineering level.

3.2.1 Enterprise system level. This is where the profit of each
individual architecture is calculated. This level includes the set of
generated product concepts that are directly incorporated into the
engineering product design process. Also included in the enter-
prise system level is the market demand information predicted for
a particular product variant �j�. Mathematically, this is represented
as follows.

Given

TC,MaxPrice�j�,dj,R
engL

,costarchitecture�j�
L

min − �architecturej
+ �TC − Reng�2

2 + �R + �C �9�

with respect to

Reng,�R,costarchitecture�j�,�C

subject to

h1: �architecturej

− dj · �MaxPrice�j� − costarchitecture�j�� = 0 �10�

g1: �Reng − RengL
�2

2 − �R � 0 �11�

g2: �costarchitecture�j� − costarchitecture�j�
L �2

2 − �C � 0 �12�

Enterprise level: variable notation definitions. TC represents
architecture targets �set of attribute combinations� predicted by
C4.5 decision tree model. dj represents the customer demand for
product concept j predicted by the C4.5 data mining tree genera-
tion. �Conceptually, this represents the number of cases supporting
the final attribute partitioning, yielding a single leaf, i.e., class
prediction.� MaxPricej is the single class variable predicted by the
continual partitioning of the set of training data until a single class
is achieved. RengL

is the engineering performance response target
from the engineering subsystem level, cascaded up to the enter-
prise level. Reng: at iteration 1 of the ATC formulation �53,54�
Reng represents the enterprise estimation of engineering design
capabilities. This will be updated with each iteration to reflect the
true design values achievable by the engineering level, i.e., RengL

.
costarchitecture�j�

L represents the product cost based on the engineer-
ing capabilities of meeting predicted customer attributes. At itera-

tion 1, this is estimated by enterprise decision makers and updated
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o reflect the true cost based on engineering response thereafter.
architecturej

is the profit of architecture j, which is a function of
rice and cost of the product variant j. �R is the deviation toler-
nce between customer performance and targets and engineering
esponse. �C is the deviation tolerance between enterprise product
ost estimation and targets and engineering response.

3.2.2 Engineering level. This is where the individual architec-
ure costs are calculated, along with the physical product architec-
ure design. The engineering design level is modeled as a mixed
nteger nonlinear programming problem �55�, with discrete selec-
ion variables that govern component choice selections �manufac-
urer specifications, component design, etc.� and continuous vari-
bles that regulate the product dimensions and aesthetic design.
he iteration between the enterprise level and the engineering

evel determines the feasibility criteria for each product as cus-
omer targets are set at the enterprise level and subsequently vali-
ated with an engineering subsystem response within a specified
olerance for �. Mathematically, this is represented as follows.

Given

RengU

�13�
min costarchitecturej

+ �RengU
− Reng�2

2

ith respect to

xeng

ubject to engineering product design equality constraints, produc-
ion capacity, materials, and supplier constraints

heng�xeng� = 0 �14�

geng�xeng� � 0 �15�

Engineering level: variable notation definitions. costarchitecturej
:

he engineering design objective, cost, is the primary performance
riterion influencing the product design, while the objective is not
imited to the cost. The objective can be any individual product
erformance objective, such as cost, weight, etc. In our cell phone
xample problem, the engineering objective is to minimize the
ost, as well as to match the attributes targets RengU

. RengU
repre-

ents the engineering performance response target from the enter-
rise system level, cascaded down to the engineering level. Reng

epresents the performance response from the engineering design,
.e., Reng=Reng�xeng�. �The engineering response Reng will become

engL
at the enterprise system level.�

The product architecture is defined in this work as the engineer-
ng design foundation, from which product variants can evolve.
he functionality of each product architecture is unique and ad-
resses the fundamental requirements of the product. For ex-
mple, an MP3 product architecture would be designed such that

Fig. 3 Set of linear design equation
architecture formulation
he MP3 functionality can be easily accessed and controlled by the
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user. An interactive Game capable �noted as Games in our cell
phone example� cell phone would have a product architecture that
allows the user to seamlessly switch from game playing mode to
phone operation mode. These differences are addressed in the en-
gineering design level, where customer attributes are translated
into engineering design functionality through a set of linear con-
straints �see Figs. 3 and 4�.

3.2.3 Enterprise portfolio selection. This is where the overall
enterprise portfolio profit is determined by searching through the
feasible product space and selecting/deselecting architectures in
an attempt to maximize profit by generating an optimal product
portfolio. Here, the optimal portfolio is defined as the selected
products that maximize the enterprise profit within the product
portfolio limit K. The termination of this selection process is de-
termined when either �1� the product portfolio limit is reached in
case there exist more profitable product concepts than the limit, or
�2� all the profitable product concepts are identified in case the
number of profitable product concepts is less than the limit. Math-
ematically, this is represented as

min − 

j=1

k

xj · �architecture�j� �16�

subject to

h1: xj = �0,1�, j � �1, . . . ,k� �17�

g1: 

j=1

k

xj − K � 0 �18�

Enterprise portfolio selection: variable notation definitions.
�architecture�j� represents profit of architecture j. xj represents the
binary variable selecting or deselecting particular architecture
��architecture�, where 
 j=1

k xj �K. k is the total feasible product/
variants that can be designed. This numeric value is attained
through the engineering design validation process. The value k
therefore represents the total number of product/variants that sat-
isfy customer performance and price expectations. K is the prod-
uct portfolio limit. To avoid impractical manufacturing expecta-
tions and an oversaturation of products in the market space, the
number of products existing in the product portfolio must be con-
strained. The value set as the maximum portfolio limit may be a
function of many externalities including competition, distribution,
marketing constraints, etc. In our approach, we have left the prod-
uct portfolio limit up to the enterprise decision maker. �Note: de-
pending on the number of existing feasible products, this limit
may/may not be reached.�

The flow diagram in Fig. 1 represents the overall process from
customer preference acquisition via database extraction to the

in matrix form… guiding the product
s „
generation of product concepts. The validated product concepts
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ith the highest profit margins will form the product portfolio
subject to the product portfolio limit as determined by enterprise
ecision makers�.

Application: Cell Phone Design

4.1 Phase 1: Cell Phone Customer Knowledge Discovery.
o validate the proposed decision tree approach in generating a
roduct portfolio, we present a cell phone product portfolio case
tudy. A cell phone survey was designed using the University of
llinois at Urbana-Champaign �UIUC� webtools platform where
espondents had the option of selecting a combination of attribute
alues and the price category that most closely represented their
election �56�. To emphasize the strength of data mining in han-
ling large data sets, additional data were simulated �based on the
enerated survey questionnaire� using Excel Visual Basic to
chieve a total of 40,000 customer responses. The data prepro-
essing steps explained in Sec. 3.1.2 are handled by the data min-
ng analysis tool �44�. In machine learning techniques, the raw
ata are partitioned; typically 2/3 is used to train the algorithm,
nd the remaining 1/3 is used to test the model for predictive
ccuracy �45�. For demonstration purposes, we have taken a small
raction of the train data T to illustrate the decision tree generation
lgorithm discussed earlier. A set of ten cases will demonstrate the
ain ratio criteria in decision tree decomposition �see Table 2�.

Our class variable in Table 2 is MaxPrice and is defined as the
aximum price a customer is willing to pay for a particular prod-

ct. The class variable can be altered, depending on the focus of
he enterprise decision makers to reflect the strategic objectives of
he company. In our methodology, the primary information we are
oncerned with in the data mining process is the price sensitivity
nformation predicted by the decision tree with varying attribute
ombinations.

Each row in Table 2 will be defined as an independent case.
The term case refers to a unique customer response containing
ertain attribute values along with the associated class value�.
here are six attributes in our example table represented as �Fea-

ure, Priority, Type, Connectivity, Battery Life, and Display�. The

Fig. 4 A matrix forming the linear equation
signified by a value of 1.
lass variable MaxPrice is partitioned into five separate mutually
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exclusive classes �$40, $80, $120, $160, $200�.
Since the ten cases in our example do not all belong to the same

class, we can implement the C4.5 divide and conquer algorithm in
an attempt to split the cases into subsets. There are four classes in
our cell phone sample train T file �the $40 class of MaxPrice did
not occur in this illustration but occurs in larger training sets�. T
contains three cases belonging to the $200 class, four cases be-
longing to the $160 class, two cases belonging to the $120 class,
and one case belonging to the $80 class for a total of ten cases for
our training data in Table 2.

4.1.1 Product concept generation through C4.5 decision tree
classification. Step 1: class identification. Following the C4.5 al-
gorithm, the first step is to determine the average information
needed to identify a value of MaxPrice in our training data.
info�T� �bit� will be defined as

info�T� = −
3

10
· log2� 3

10
	 −

4

10
· log2� 4

10
	 −

2

10
· log2� 2

10
	

−
1

10
· log2� 1

10
	 = 1.846 bits �19�

The above info�T� calculation is determined directly from Table
2, where the information needed to identify the three cases of our
$200 class out of the total ten cases is represented in Eq. �19� as
−3 /10· log2�3 /10� and similarly for each subsequent class
identification.

Step 2: attribute selection. The information gained by selecting
a particular attribute will determine the sequence of attribute se-
lection and consequently the structure and length of the decision
tree or, in product development terms, the number of candidate
product concepts that are generated and deemed to be the best
predictors of each class of MaxPrice. The tree decomposition pro-
cess is an iterative approach, substituting one attribute over an-
other if a higher information gain can be realized by selecting this
attribute as a node in the tree. Let us now arbitrarily select an
attribute to be used as our initial node �root� and calculate the

. The matrix is sparse, with active elements
set
information gained by this selection.
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�Attribute test=feature� We then partition the attribute selected
nto its individual mutually exclusive outcomes �represented by
ranches in the actual decision tree�. We have four cases that are
P3, two cases that are Camera, and four cases that are Games to

omprise the ten Feature cases, as illustrated in Fig. 2. We can
ow determine the expected information requirement of the Fea-
ure attribute as the weighted sum of the three subsets �MP3,
amera, Games�

info�X=feature��T� =
4

10
· �−

1

4
· log2�1

4
	 −

2

4
· log2�2

4
	

−
0

4
· log2�0

4
	 −

1

4
· log2�1

4
	

+
2

10
· �−

0

2
· log2�0

2
	 −

0

2
· log2�0

2
	

−
2

2
· log2�2

2
	 −

0

2
· log2�0

2
	

+
4

10
· �−

2

4
· log2�2

4
	 −

2

4
· log2�2

4
	

−
0

4
· log2�0

4
	 −

0

4
· log2�0

4
	 = 1.00 bits

�20�

herefore, the information gained by testing attribute=feature is
imply

gain�X� = info�T� − info�X=feature��T� = 1.864 − 1.00 = 0.864 bits

�21�

n the event that our data set contains one or several attributes
ith a significantly greater range of outcomes, the split info�X�

unction can attempt to normalize the attributes.

gain ratio�X� =
gain�X�

split info�X�
= 0.57 �22�

ach subsequent attribute that is tested on the basis of gain ratio
riterion is compared to the previous attribute and substituted if a
igher gain ratio is achieved. This iterative process is continued
ntil a single class is identified for a given attribute split. Further
llustration is given in Phase 1 in Fig. 1, and a visual representa-
ion of the generated C4.5 decision tree using the 40,000 raw
ustomer data set is provided in Fig. 2.

Translation of customer attributes to engineering design func-
ionality. Customer predicted attribute information must be trans-
ated into meaningful engineering functionality criterion for the
roduct design process. A set of linear equations represented by
ig. 3 indicate which of the product functionality components are

ncluded in a particular product architecture. Figure 4 is simply a
extual explanation of the A-matrix and indicates which of the
ngineering components are active.

Depending on the cell phone architecture type and the engineer-
ng design objective function, one or several of the elements in
ach row of the A-matrix will be active �1� or inactive �0�. The
pper and lower bounds for the linear equations �b-matrix� there-
ore fluctuate based on the product concept requirements currently
eing tested. For example, if an MP3 product concept requires a
luetooth connectivity feature, the element representing bluetooth
onnectivity in row 7 of the A-matrix will automatically be active
1� and the lower bound for the connectivity linear constraint
which comprises of three possible connectivity options: Blue-
ooth, Infrared, or Wifi �see row 7 of Fig. 4�� will immediately be
et to 1. That is, b7 in Fig. 3 will be �1. Furthermore, the lower
ound for the external speaker �Row 11 of the A-matrix in Fig. 4�
ill be set to 1, indicating that the MP3 cell phone, will come
quipped with external audio capability �a functionality transla-
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tion based on the customer attribute requirement of MP3 music
playback�. The numbers in closed brackets in each row of the
A-matrix in Fig. 4 �i.e., column indices� indicate the number of
possible choices for that particular component group.

4.2 Phase 2: Product Concept Validation. Enterprise level:
cell phone design validation and profit calculation. Once the cus-
tomer data set of 40,000 cases �with 576 unique attribute combi-
nations� has been narrowed down to 46 generated product con-
cepts �vector of predicted product attribute combinations� via the
C4.5 data mining tree generation technique, we must now deter-
mine the engineering design feasibility and potential profit margin
for each product; mathematically represented as follows.

Given

Tbattery life, Tconnectivity, Tpriority, Tdisplay, Ttype

MaxPricej, dj, Rbattery lifeengL

, RconnectivityengL

RpriorityengL

, RdisplayengL

, RtypeengL

, costj
L

min − �architecturej
+ �Tbattery life − Rbattery lifeeng

�2
2

+ �Tconnectivity − Rconnectivityeng
�2

2 + �Tpriority − Rpriorityeng
�2

2

+ �Tdisplay − Rdisplayeng
�2

2 + �Ttype − Rtypeeng
�2

2

+ �battery life + �connectivity + �priority

+ �display + �type + �C �23�

with respect to

Rbattery lifeeng
, Rconnectivityeng

, Rpriorityeng

Rdisplayeng
, Rtypeeng

, costj, �battery life, �connectivity,

�priority, �display, �type, �C

subject to

h1: �architecturej
− dj · �MaxPricej − costj� = 0 �24�

h2: MaxPricej = �$40,$80,$120,$160,$200� �25�

g1: �Rbattery lifeeng
− Rbattery lifeengL

�2
2 � �battery life �26�

g2: �Rconnectivityeng
− RconnectivityengL

�2
2 � �connectivity �27�

g3: �Rpriorityeng
− RpriorityengL

�2
2 � �priority �28�

g4: �Rdisplayeng
− RdisplayengL

�2
2 � �display �29�

g5: �Rtypeeng
− RtypeengL

�2
2 � �type �30�

g6: �costj − costj
L�2

2 � �C �31�

Here, the attributes are given as product design targets T, and the
engineering design responses are R, for which deviations are de-
fined as �. Individual product demand is noted dj with correspond-
ing price MaxPricej and cost costj. The initial evaluation of the
engineering design response is estimated and then subsequently
updated with each engineering design response thereafter.

Engineering level: product design validation. After the enter-
prise profit is calculated for each of the 46 product variant con-
cepts, individual product variants are checked for their feasibility
in the engineering design space. Based on the attribute targets, the
engineering design team attempts to minimize the cost while

meeting the product attribute requirements.
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Given

Rbattery lifeU
, RconnectivityU

, RpriorityU
, RdisplayU

, RtypeU

min costarchitecturej
+ �Rbattery lifeU

− Rbattery life�2
2

+ �RconnectivityU
− Rconnectivity�2

2 + �RpriorityU
− Rpriority�2

2

+ �RdisplayU
− Rdisplay�2

2 + �RtypeU
− Rtype�2

2 �32�
ith respect to

xeng

ubject to2 Screen Resolution constraints, Battery Design con-
traints, Outer Casing Design �Phone Type� constraints, and De-
ign Priority constraints �component cost estimates can be seen in
able 3�.

geng�xeng� � 0,heng�xeng� = 0 �33�
Product portfolio selection. Among the feasible product vari-

nts �35 out of 46�, the final step is to generate product portfolio
nder the specified limit of 7 total products. For each product
ariant, the selection variable x is defined to achieve the final
ost profitable product portfolio

min − 

j=1

k

xj · �architecture�j� �34�

ubject to

h1: xj = �0,1�, j � �1, . . . ,35� �35�

g1: 

j=1

35

xj − 7 � 0 �36�

Results and Discussion
Our methodology in formulating an optimal product portfolio

resents more than just a set of feasible product concepts, but
ather a validated portfolio of product designs that are the best
ndicators of market success, which ultimately maximize overall
nterprise profit. Table 4 presents the final solution achieved in

2To enhance the overall flow of the paper, the elaborate constraints governing the
ngineering design of cell product variants are condensed and represented by only

eng�xeng� and heng�xeng� above. Refer to the Appendix including Table 3 for detailed

Table 3 Possible sha

omponent Description

nternal memory �RAM� 32 MB RAM discrete choice va
nternal memory �RAM� 64 MB RAM discrete choice va
xternal memory Memory stick pro discrete choice
xternal memory Memory stick duo discrete choice
ard drive 1 GB storage discrete choice va
ard drive 2 GB storage discrete choice va
hone type Shell phone design variable
hone type Flip phone design variable
attery type Lithium polymer �57� battery design
attery type Lithium ion �57� battery design v
onnectivity Bluetooth connection discrete v
onnectivity Wifi discrete choice variab
onnectivity Infrared discrete choice varia
udio codec Microphone discrete variab
udio codec Earpiece discrete variable
udio codec Audio jack discrete variabl
udio codec External speaker discrete vari
isplay type TFT LCD �58� discrete varia
isplay type OLED �58� discrete variab
ell phone design model.
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our cell phone case study of 40,000 customer responses that we
subsequently narrowed down to 46 predictive product concepts.
As can be seen in Table 4, column 10, the multilevel optimization
formulation returns a vector of feasible/infeasible product designs
based on customer predictive preference targets cascaded down to
the engineering level. In our formulation, the term feasibility is
defined as customer preference targets attained through data min-
ing predictive techniques that are matched within the engineering
design response tolerance of �=0.01. A product design that fails to
satisfy this tolerance is considered to be a suboptimal product
variant and is excluded in the optimal product portfolio.

Product feasibility is however not the only measure of product
design success. With the incorporation of demand information di-
rectly acquired through the C4.5 data mining process, each prod-
uct variant profit can be calculated based on the unit product cost,
the MaxPrice class prediction, and the demand for a particular
product concept j. Referring to the results for the Generic Phone
architecture in Table 4, we observe that there are 11 product con-
cepts generated through the data mining technique. As the results
indicate, generic product variant 11 with a predicted battery life
expectation of 7 h and a MaxPrice prediction of $40, was found to
be infeasible in the engineering design formulation. The violated
target in this scenario was that of the battery life with a maximum
attainable engineering design response of 6.79 h. Using our metric
for evaluating feasible designs, this product concept clearly vio-
lates our tolerance limit, hence, is excluded as a candidate for our
optimal product portfolio. In addition to the feasiblity check, our
approach also generates the unit cost for product design with its
corresponding profit. For this specific variant, Generic variant 11
in the Table 4, the unit cost is $53.73; therefore, its corresponding
loss is $15,422. Customers may indicate their preference for this
specific variant. However, this concept should not be pursued due
to the projected loss, as well as it is outside the maximum portfo-
lio limit size that is described below.

If we observe our Generic architecture results more closely, we
can identify several product concepts that are feasible in the en-
gineering design but are omitted in our optimal product portfolio
set. As discussed earlier, this is due to the fact that overall enter-
prise profit is the second criterion for evaluating product variants
to be included in our optimal product portfolio. There are total of
11 infeasible and/or negative profit generating product variants
out of the 46 product concepts predicted by the data mining pro-
cess, leaving us with 35 candidate products to introduce to the cell
phone market. Depending on the enterprise product portfolio
limit, and the number of product families that can be managed, all

component variables

Cost range Design options

le $0.15–$0.35 Manufacturer
le $0.41–$0.51 Manufacturer

iable $1.1–$1.3 Manufacturer
iable $1.44–$1.65 Manufacturer
le $15.63–$17.4 Manufacturer
le $24.83–$26.80 Manufacturer

$2.2�10−4 /volume Engineering design
$1.47�10−4 /volume Engineering design

riables $8.03�10−4 /volume Engineering design
bles $3.79�10−4 /volume Engineering design
ble $5.20–$5.8 Manufacturer

$7.0–$7.3 Manufacturer
$3.7–$3.73 Manufacturer

$0.81–$0.84 Manufacturer
$0.1–$0.14 Manufacturer
$0.6–$0.8 Manufacturer
$1.7–$3.75 Manufacturer

$5.0�10−3 /volume Manufacturer
$8.0�10−3 /volume Manufacturer
red

riab
riab
var
var
riab
riab
s
s

va
aria
aria
le
ble
le

e
able
ble
le
or a few of these products could be considered for market launch.
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If we assume a maximum portfolio limit size of seven, the
nterprise optimal product portfolio, as described in Sec. 3.2,
ould simply be a selection of the most profitable product vari-

nts, subject to the portfolio limit constraint. This is modeled by
he selection problem in Eqs. �34�–�36�. If we explore our entire
easible product concept space, we will achieve a solution of
even product variants spanning multiple product families. Our
nal solution yields one product variant from the Games product
amily, three product variants from the Camera product family
Camera product variants �1,2,5��, and three product variants from
he MP3 product family �MP3 product variants �1,2,4�� yielding a
otal product portfolio sales volume �based on demand informa-
ion� of 8265 units and an overall enterprise profit of $898,185
Table 3�.

Such powerful insights enable enterprise decision makers to
valuate products/variants based on several dimensions of perfor-
ance. In our example of 40,000 customers, we observe that each

ustomer does not have to be provided with his/her own unique

able 4 Results of C4.5 data mining product concept generati
roduct portfolio.

roduct
latform

Product
variants Priority Type Connectivity

Battery
life Disp

eneric 1 Weight Bluetooth 3
2 Cost Bluetooth 3
3 Infrared 3
4 Weight Wifi 3
5 Cost Wifi 3
6 Weight Bluetooth 5
7 Weight Infrared 5
8 Weight Wifi 5
9 Cost Flip 5
10 Cost Shell 5
11 7

MS text 1 3 Scree
2 Flip 3 Resol
3 Shell 3 Resol
4 Weight Bluetooth 5
5 Cost Bluetooth 5
6 Infrared 5
7 Wifi 5
8 7 Scree
9 Weight 7 Resol
10 Cost 7 Resol

ames 1 Bluetooth 3
2 Bluetooth 5
3 Infrared
4 None
5 Weight Wifi
6 Cost Wifi 3
7 Cost Wifi 5

amera 1 Bluetooth
2 Infrared
3 None Scree
4 None Resol
5 Wifi

nternet 1 Bluetooth Scree
2 Bluetooth Resol
3 Weight Infrared
4 Cost Infrared
5 Weight Flip None
6 Cost Flip None
7 Weight Shell None
8 Cost Shell None
9 Wifi

P3 1 - - Bluetooth - -
2 - - Infrared - -
3 - - None - -
4 - - Wifi - -
ustomizable product, but rather purchasing behaviors can be ad-
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dressed with the 46 product concepts generated in our data mining
predictions. Furthermore, enterprise decision makers can deter-
mine which out of these product concepts would be the most
successful in an attempt to maximize profit.

6 Conclusion
The volatility of highly competitive consumer markets is the

major driving force shaping company strategies in product devel-
opment. The power to accurately predict and design products be-
fore they are launched is a fundamental tool in ensuring a com-
petitive advantage among fierce competition. The major focus of
our research is to develop a methodology to predict customer
wants and subsequently to design the most profitable products or
product variants. We addressed the predictive aspect of product
development through data mining and machine learning tech-
niques and generated candidate product concepts along with indi-
vidual predicted demand information. The validation of these

The yellow highlighted rows indicate members of the optimal

Demand
Max
Price

Engineering
design

validation
Product
unit cost

Generated
profit

Product
portfolio
member

293 $80 Feasible $46.04 $9951 Yes
297 $40 Feasible $43.66 �$1087 No
591 $80 Feasible $41.59 $22,701 Yes
284 $40 Feasible $47.77 �$2206 No
318 $80 Feasible $45.42 $10,997 Yes
290 $40 Feasible $53.69 �$3970 No
283 $40 Feasible $57.08 �$4833 No
302 $80 Feasible $60.65 $5845 Yes
468 $80 Feasible $45.04 $16,363 Yes
413 $40 Feasible $51.28 �$4659 No
1123 $40 Infeasible $53.73 �$15,422 No

ze 907 $160 Feasible $45.61 $103,752 Yes
n 441 $160 Feasible $48.44 $49,196 Yes
n 423 $80 Feasible $47.91 $13,575 Yes

314 $160 Feasible $66.64 $29,316 Yes
331 $80 Feasible $58.33 $7174 Yes
578 $120 Feasible $56.26 $36,844 Yes
600 $80 Feasible $59.83 $12,104 Yes

ze 579 $80 Infeasible $61.22 $10,872 No
n 296 $80 Infeasible $64.09 $4710 No
n 294 $40 Infeasible $64.06 �$7073 No

581 $160 Feasible $55.33 $60,812 Yes
563 $120 Feasible $68.21 $29,158 Yes
1185 $160 Feasible $49.42 $131,031 Yes
1104 $120 Feasible $45.69 $82,033 Yes
598 $160 Feasible $56.30 $62,011 Yes
304 $120 Feasible $56.83 $19,203 Yes
321 $160 Feasible $69.71 $28,983 Yes
1166 $200 Feasible $87.59 $131,075 Yes
1222 $200 Feasible $88.58 $136,150 Yes

ze 602 $120 Feasible $88.59 $18,909 Yes
n 580 $80 Feasible $79.99 $6 No

1184 $200 Feasible $79.98 $142,103 Yes
ze 583 $120 Feasible $54.67 $38,085 Yes
n 546 $160 Feasible $57.51 $55,960 Yes

559 $160 Feasible $56.59 $57,807 Yes
543 $120 Feasible $52.60 $36,596 Yes
295 $160 Feasible $52.86 $31,607 Yes
294 $80 Feasible $48.87 $9151 Yes
297 $80 Feasible $51.53 $8455 Yes
295 $160 Feasible $48.36 $32,932 Yes
1120 $120 Feasible $56.17 $71,485 Yes
1239 $200 Feasible $98.48 $125,778 Yes
1108 $200 Feasible $95.90 $115,337 Yes
1124 $80 Feasible $92.17 �$13,685 No
1161 $200 Feasible $99.47 $116,710 Yes
on.

lay

n si
utio
utio

n si
utio
utio

n si
utio

n si
utio
product concepts at the engineering design level increases the
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ikelihood of the products being market successes if launched. As
result, enterprise decision makers will have several options in

ormulating an optimal product portfolio. Other metrics, such as
evel of commonality among product variants, can be used as an
dditional evaluation metric in deciding product launches. Addi-
ional cost savings benefits can be realized through post optimality
nalysis of shared components. In future works, we plan to
resent how such commonality analysis techniques may alter the
ptimal product portfolio solution.

omenclature
K � product portfolio limit �maximum number of

existing products at launch�
TC � product variant targets component predicted by

decision tree model
RE � engineering design response

� � projected profit of a feasible product design
based on engineering design and predicted
demand

�R � deviation tolerance between customer perfor-
mance targets and engineering response
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ppendix: Cell Phone, Detailed Design Model
Several variable names are abbreviated �L=length, W=width,

=thickness, Wg=weight, V=volume, cap=capacity, P=power
onsumption, etc.�.

1 Screen Resolution Constraints.

h1: �A1 � LCDlength � LCDwidth� − LCDres = 0 �A1�

h2: �A2 � LCDlength � LCDwidth� − costLCD = 0 �A2�

h3: �A3 � LCDlength � LCDwidth� − weightLCD = 0 �A3�

h4: �A4 � LCDlength � LCDwidth� − powerLCD = 0 �A4�

h5: �A5 � OLEDlength � OLEDwidth� − OLEDres = 0 �A5�

h6: �A6 � OLEDlength � OLEDwidth� − costOLED = 0 �A6�

h7: �A7 � OLEDlength � OLEDwidth� − weightOLED = 0

�A7�

h8: �A8 � OLEDlength � OLEDwidth� − powerOLED = 0 �A8�

2 Battery Design Constraints.

h9: capNIMH − �NIMHconst1 � �VNIMH�� − Thours � 

i=1

N

Pcomponenti

= 0 �A9�

10: capLION − �LIONconst1 � �VLION�� − Thours � 

i=1

N

Pcomponenti
= 0

�A10�

h11: ��NIMHconst2 � �LNIMH � WNIMH � TNIMH�� − costNIMH� = 0
�A11�

41004-12 / Vol. 9, DECEMBER 2009
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h12: ��LIONconst2 � �LLION � WLION � TLION�� − costLION� = 0

�A12�

h13: ��NIMHconst3 � �LNIMH � WNIMH � TNIMH�� − WgNIMH� = 0

�A13�

h14: ��LIONconst3 � �LLION � WLION � TLION�� − WgLION� = 0

�A14�

h15: batterytalk time − �NIMH � ��0.0053 � �capacityNIMH���

+ 0.0269� = 0 �A15�

h16: batterytalk time + ��LION � ��0.0061 � �capacityLION��

+ 0.1667��� = 0 �A16�

g1: �NIMH � LNIMH + LION � LLION� − 0.60 � �SHELL � LSHELL

+ FLIP � LSHELL� � 0 �A17�

g2: �NIMH � WNIMH + LION � WLION�

− 0.95 � �SHELL � WSHELL + FLIP � WFLIP� � 0

�A18�

g3: �NIMH � TNIMH + LION � TLION� − 0.45 � �SHELL � TSHELL

+ FLIP � TFLIP� � 0 �A19�

3 Design Parameters.

A1, . . . ,A8 = �14.74,5 � 10−3,4 � 10−2,1 � 10−2,19.62,8

� 10−3,3 � 10−3,3 � 10−3�

NIMHconst1,2,3 = �21 � 10−2,37 � 10−4,9.8 � 10−4�

LIONconst1,2,3 = �43 � 10−2,8.0 � 10−4,8.8 � 10−4�

SHELLconst1,2 = �2.29 � 10−4,5.1 � 10−4�

FLIPconst1,2 = �1.47 � 10−4,4.9 � 10−4�

4 Cell Phone Outer Casing Design Constraints.

h17: �SHELLconst1 � LSHELL � WSHELL � TSHELL� − costSHELL = 0

�A20�

h18: �FLIPconst1 � LFLIP � WFLIP � TFLIP� − costFLIP = 0

�A21�

h19: �SHELLconst2 � LSHELL � WSHELL � TSHELL� − WgSHELL = 0

�A22�

h20: �FLIPconst2 � LFLIP � WFLIP � TFLIP� − WgFLIP = 0

�A23�

g4: LLCD − �0.60 � SHELL � LSHELL + 0.60 � FLIP � LFLIP� � 0

�A24�

g5: �0.30 � SHELL � LSHELL + 0.30 � FLIP � LFLIP� − LLCD � 0

�A25�

g6: WLCD − 0.90 � �SHELL � WSHELL + FLIP � WFLIP� � 0

�A26�

g7: 0.7 � �SHELL � WSHELL + FLIP � WFLIP� − WLCD � 0
�A27�
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g8: LOLED − �0.60 � SHELL � LSHELL + 0.60 � FLIP � LFLIP� � 0

�A28�

g9: �0.30 � SHELL � LSHELL + 0.30 � FLIP � LFLIP� − LOLED � 0

�A29�

g10: WOLED − 0.90 � �SHELL � WSHELL + FLIP � WFLIP� � 0

�A30�

g11: 0.7 � �SHELL � widthSHELL + FLIP � widthFLIP�

− OLEDwidth � 0 �A31�

5 Design Objective Constraints.

h20: TotalCost − 

i=1

N

component�i�cost = 0 �A32�

h21: TotalWeight − 

i=1

N

component�i�weight = 0 �A33�
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