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The optimal design of hybrid power generation systems (HPGSs) can significantly im-
prove the technical and economic performance of power supply. However, the discrete-
time simulation with logical disjunctions involved in HPGS design usually leads to a
nonsmooth optimization model, to which well-established techniques for smooth nonlin-
ear optimization cannot be directly applied. This paper casts the HPGS design optimi-
zation problem as a multidisciplinary design optimization problem with complementarity
constraints, a formulation that introduces a complementarity formulation of the nons-
mooth logical disjunction, as well as a time horizon decomposition framework, to ensure
a fast local solution. A numerical study of a stand-alone hybrid photovoltaic/wind power
generation system is presented to demonstrate the effectiveness of the proposed
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Introduction
In many regions of the world, the topography of the landscape

revents connectivity to the electrical grid. In these cases, one no
onger has access to the grid and the traditional power source has
een a diesel generator. However, the rising cost of fuel and the
ssociated fuel transportation costs are making this option less
esirable. In addition to the recurring costs accompanying diesel
eneration, the quantification of the environmental impact due to
missions is of increasing concern �1�. One alternative that by-
asses these issues associated with diesel power is distributed
eneration using renewable resources.

Distributed power generation using renewable energy sources
resents a promising alternative due to cost and environmental
oncerns �1�. As renewable energy sources are extremely variable
nd unpredictable by nature, they are usually combined with bat-
ery storage to ensure reliability, leading to a hybrid power gen-
ration system �HPGS� �2�. Currently, energy conversion tech-
iques using renewable resources such as wind and solar have
een developed to the point where a HPGS consisting of these
wo components and an energy storage method is price competi-
ive with a grid extension in some locations. As the price of HPGS
s reduced further, they will soon become competitive with grid
ower �1�.

1.1 Hybrid Power Generation System Design. The design
ecision at the system level �e.g., system sizing, configuration,
nd operation� has been identified as a key driver of HPGS cost
eduction and plays an increasingly important role in HPGS de-
ign. Current HPGSs are often overbuilt in order to ensure that
ower is supplied even if the available resources are performing
ell below average. If an optimal design can be determined for a
iven location, the components with the minimal, while adequate,
apacity can be employed, significantly reducing the system cost.

Many efforts have been made to facilitate the effective design
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of HPGSs: Individual components have been captured with math-
ematical models at various fidelities �refer to Sec. 2�, and system
performances �i.e., the HPGS’s ability to supply the load� have
been estimated either through chronological simulations based on
resource data or through probabilistic techniques that account for
the resource fluctuations �2�. In addition, optimization procedures
have been used to derive optimal HPGSs for given situations.
Methods currently in use include graphic construction methods
�3�, probabilistic approaches �4�, enumerative approaches �5�, and
artificial intelligence methods �6,1�. Some of these methods, such
as graphic construction methods and enumerative approaches, in-
volve procedures that lack autonomous design, while the other
methods, such as probabilistic approaches and artificial intelli-
gence methods, either incur intensive computation or suffer from
suboptimal solutions.

The design optimization of HPGSs involves discrete-time simu-
lation of the system over a certain time period. This setting pre-
sents two challenges for numerical optimization. First, the dynam-
ics of such systems is usually discrete in nature. The systems
include nonsmooth logical disjunctions, e.g., switching between
different sets of equations based on working conditions, and other
nonsmooth functions, such as minimum and maximum operations.
Due to this discrete nature, well-established optimization tech-
niques for smooth problems cannot be applied to such systems.
Second, the consideration of system performance at each time step
introduces additional variables �referred to as time dependent vari-
ables� to the optimization model, thus increasing the size of the
problem. As the number of time steps increases, solving the HPGS
design optimization problem with an all-in-one �AIO� approach,
which handles all the variables in a single optimization problem,
may become impractical, undesirable, or even impossible.

Traditionally, one way of capturing logical disjunctions is to
introduce discrete variables. However, such a mixed integer opti-
mization model usually incurs intensive computational cost for
large problems as the worst case solution time grows exponen-
tially with the number of discrete variables. Alternatively, heuris-
tic schemes such as genetic algorithm can be integrated with the
discrete-time simulation. While this type of approach is robust, in
general, it also suffers from the lack of guarantees for optimality.

In this paper, a different track of handling the discreteness is pre-
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ented through the aid of complementarity constraints �CCs�.
omplementarity is a relationship between functions �variables�
here either one �or both� must be at its boundary. An example of

he CC is given as follows:

0 � F�x� � G�x� � 0 �1�

here x represents the variables and F and G are multifunctions
n Rp. Particularly, the symbol � indicates that G and F are non-
egative and that either �G� j or �F� j or both are zero for j
1, . . . , p. The CC in Eq. �1� can be equivalently converted into

he following set of inequality constraints:

F � 0, G � 0, G�x� � F�x� � 0 �2�

here the symbol � represents the Hadamard product, i.e., the
erm-by-term product operation between two vectors: a �b
�a1 , . . . ,an�T � �b1 , . . . ,bn�T= �a1b1 , . . . ,anbn�T.
CCs can arise from various physical, economic, and procedural

onsiderations of engineering applications. The readers are re-
erred to Ref. �7� for a brief discussion on the relevance of CCs to
ultidisciplinary design. In particular, CCs are useful in HPGS

esign optimization, as discussed in Sec. 3, in that they can be
sed to model certain types of logical disjunctions in discrete-time
ystem models without the use of binary variables. Since general
pproaches for mixed integer optimization usually incur intensive
omputation cost for a large problem with many discrete vari-
bles, the CC offers an alternative for some classes of disjunctive
roblems and can be embedded within a standard nonlinear pro-
ramming �NLP� solver to obtain fast local solutions. In addition,
certain level of local optimality can be ensured from this ap-

roach, supported by established theories in mathematical pro-
rams with complementarity constraints �MPCCs�.

In order to handle the size issue of HPGS design optimization,
arious decomposition-based approaches �8� can be applied so
hat the AIO problem can be solved through an iterative solution
f smaller, inter-related subproblems and coordination among
hem. In this paper, we utilize the repetition of the simulation and
ecision making of HPGS at individual time steps and present a
ime horizon decomposition framework, which decomposes the
IO HPGS design optimization problem into a set of consecutive

tage optimization subproblems.

1.2 MDO and Mathematical Programs With Complemen-
arity Constraints. Multidisciplinary design optimization �9�
MDO� has been investigated extensively over the past decades.

DO problems can be solved directly with so-called AIO ap-
roaches, which handle all the variables in a single optimization
roblem. The implementation of the AIO approach is straightfor-
ard; however, it may become impractical as the complexity of

he problem increases. As an alternative to the AIO approaches,
everal MDO methods are currently available. These methods in-
lude concurrent subspace optimization �10�, bilevel integrated
ystem synthesis �11�, collaborative optimization �CO� �12�, the
onstraint margin approach �13�, analytical target cascading
ATC� �14�, penalty decomposition �PD� �15�, and augmented La-
rangian decomposition �ALD� �16�. Solving MDO problems
ith decomposition approaches could be advantageous for many

easons. Computationally, it breaks the AIO problems into smaller
ubproblems usually easier to solve; it also allows specialized
lgorithms to be applied to each subproblem. Organizationally, it
eeps the individual disciplinary design optimizations as indepen-
ent as possible with a minimum amount of communication, mak-
ng it possible to integrate existing disciplinary analysis codes at
mall expense.

Among all the variants of MDO, the quasi-separable MDO
roblem has gained particular attention during recent years. Many
f the above mentioned MDO methods �e.g., CO, constraint mar-
in approach, PD, and ALD� can be considered as the quasi-
eparable MDO problem. In addition to these, Ref. �17� proposed

n ATC variant with local objectives under the context of multi-

01007-2 / Vol. 132, OCTOBER 2010
mode design optimization. Among these approaches, PD, ATC,
and ALD have been shown to have formulations whose solutions
satisfy the Karush–Kuhn–Tucker �KKT� conditions of the original
problems under certain assumptions.

MPCCs represent an active research area that is not well con-
nected to the MDO. In order to solve an MPCC, one intuitive
approach is to reformulate it into a nonlinear programming prob-
lem through replacing the CCs �Eq. �1�� with its equivalent in-
equality constraints �Eq. �2��. However, the resulting nonlinear
program usually fails to satisfy the linear independence constraint
qualification �LICQ� �18� and the weaker Mangasarian–Fromovitz
constraint qualification �MFCQ� �18� at every feasible point. The
failure of these constraint qualifications may have important im-
plications: The multiplier set may be unbounded; the active con-
straint normals may be linearly dependent; and a linear relaxation
of the reformulated nonlinear programming problem can become
inconsistent arbitrarily close to a solution of the MPCC �19�. As a
consequence, existing nonlinear programming techniques may
have difficulties solving this type of problem.

Significant efforts have been made to investigate the MPCC
solution algorithm over the past few years. Reference �19� fol-
lowed the reformulation approach and reported promising results
using sequential quadratic programming �SQP� methods. Refer-
ence �20� provided global convergence theory for SQP methods.
Some other methods solve a sequence of nonlinear programs with
penalized CCs �21,22�. An important class of methods, known as
regularization methods, requires the solution of a sequence of
regularized problems involving the relaxed constraints G�x ,y�
�F�x ,y�� tk, with tk→0. These regularized problems may be
solved by interior methods or by SQP methods. Along this line of
research, Refs. �23–25� presented interior methods under various
assumptions; Ref. �26� proposed an interior point method that
converges to a second-order KKT point and extended this method
to stochastic MPCC using scenario-based decomposition; Ref.
�27� discussed a two-sided relaxation scheme and provided local
convergence theory for an interior method coupled with such a
relaxation scheme.

MDO problems with complementarity constraints �MDO-CC�
are not frequently addressed in existing literature. In Ref. �28�, the
authors recently presented an augmented Lagrangian decomposi-
tion formulation for this problem to show the equivalence be-
tween the AIO formulation and the decomposed formulation. Ref-
erence �7� proposed a regularized inexact penalty decomposition
�RIPD� algorithm for MDO-CC and established the convergence
properties of the RIPD algorithm. Additionally, Ref. �26� pre-
sented a scenario-based decomposition formulation for stochastic
MPCCs and then solved it as an AIO problem with a parallel
algorithm.

In this paper, we present a mathematical model of HPGS design
for cost minimization under the zero loss of power supply con-
straint. In addition, a multidisciplinary design optimization prob-
lem with complementarity constraint approach is presented, which
first reformulates the logical disjunction in the HPGS simulation
into CCs and then solves the reformulated problem with a multi-
disciplinary decomposition framework. The proposed algorithm is
tested with a HPGS design case study at Corsica Island in France,
and the numerical results are encouraging.

The paper is organized as follows: In Sec. 2, the HPGS design
problem is stated, with component and system models described.
In Sec. 3, the complementarity reformulation of the HPGS design
problem is presented, followed by its multidisciplinary decom-
posed formulation. In addition, the correspondence between the
stationarity conditions of the complementarity formulation and
those of the decomposed formulation is established, and an aug-
mented Lagrangian decomposition algorithm is presented based
on the correspondence. A numerical study of an HPGS design

case is presented in Sec. 4, and conclusions are drawn in Sec. 5.

Transactions of the ASME



2

t
m

v
b
T
t
p
r
w
i

p
c
d
v
s
w
s

t
a

a
r
b
i
c
m
�

I
e
e
i

J

D
ow

nloaded from
 https://asm

edigitalcollection.asm
e.org/m

echanicaldesign/article-pdf/132/10/101007/4968353/101007_1.pdf by U
niversity of Illinois U

rbana-C
ham

paign user on 03 O
ctober 2019
Hybrid Power Generation System Design
In this section, the HPGS will be described in detail. The sys-

em configuration will be specified, the individual component
odels will be shown, and the cost calculation will be explained.

2.1 System Configuration. HPGSs can be assembled in a
ariety of ways. Some models include diesel generators as
ack-up power �29�, while others rely solely on battery back-up.
he components can also be connected in different manners. In

he case of a high wind potential site, for example, it may be
rudent to feed the ac energy produced by the wind turbine di-
ectly to the load via an uninterruptible power supply �30�. This
ould allow for bypassing the battery and related converters to

ncrease efficiency.
The power system in consideration here is a stand-alone hybrid

hotovoltaic �PV�/wind system at a remote location. This system
onsists of a PV generator, a wind generator, and a battery storage
evice, which are connected to a dc bus through the proper con-
erters. In addition, the energy generated by, or stored in, the
ystem is contributed to a remote load through a dc/ac inverter
ith enough capacity to meet the peak load demand. Figure 1

hows the configuration of the HPGS in consideration.

2.2 Component Models. The mathematical models of the
hree principal components, the PV generator, the wind generator,
nd the battery storage, are presented in this subsection.

2.2.1 Mathematical Model of PV Generator. PV panels are
ffected by many factors in very complex ways. Extremely accu-
ate models can include up to eight variables �31�. In order to
ypass some of this complexity, engineering applications regard-
ng PV panels often use simplified simulation models, which typi-
ally include the power efficiency models �2�. Here, a simplified
athematical model is employed to estimate the power output

pPV� in terms of watt-hour of the PV generator:

pPV�t� = �PV · G��t� · aPV �3�

n this model, G� is the solar irradiance in W /m2, �PV is the
fficiency of the solar panels in converting the solar energy into
lectricity, and aPV is the area of the panels in m2 for a given

Fig. 1 Schematic of hybr
teration.

ournal of Mechanical Design
2.2.2 Mathematical Model of Wind Turbine. Though fewer
variables are needed to describe wind generators, modeling a
range of sizes poses its own challenge. This is because wind gen-
erators have their own unique power curves relating the current
wind speed to the energy produced. Because the wind generator to
be installed in the system is an output of the design process and
therefore unknown during the design phase, a power curve unique
to a specific make and model will not suffice. Instead, a generic
model must be used to cover a wide range of wind generator sizes.
This is typically done by relating the wind speed to the average
power using either a piecewise function, a Weibull parameter, or
quadratic expressions �2,32�.

The model used here considers a piecewise output function of
the wind generator �pw� given the cut-in wind speed �Vin�, cut-out
wind speed �Vout�, rated wind speed �Vr�, and actual environmen-
tal wind speed �v�. All these speeds are measured in m

s and are
used to determine the power generated as follows:

pw�t� = �pr�v2 − Vin
2 /Vr

2 − Vin
2 � ,

pr,

0,

Vin � v � Vr

Vr � v � Vout

v � Vin or v � Vout
� �4�

As each wind turbine has its own design objectives, there will
be varying Vin, Vout, and Vr values. The proper wind turbine dy-
namics can be determined in the same manner as stand-alone wind
turbines, with the goal of matching the characteristic velocities to
the location’s resources in order to maximize power production
�33�.

2.2.3 Mathematical Model of Battery. As batteries are chemi-
cally and physically complex, so are the models used to predict
their behavior �34�. In the design of a HPGS, the battery is ad-
dressed in terms of energy storage and throughput. Therefore, the
internal processes of the battery are immaterial, and the battery
model needs only to reflect the energy losses inflicted by the bat-
tery. This is done by using an efficiency parameter determined to
represent the average loss of energy in a battery system �30,35�.

Here, we employ an approximated battery model considering
the state of charge of the battery. The model used requires only the

power generation system
id
nominal capacity �cnbat� and the charging efficiency ��ch� of the

OCTOBER 2010, Vol. 132 / 101007-3
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atteries as inputs and assumes that the efficiency is independent
f the current state of charge. As there are maximum and mini-
um levels of possible energy storage for any battery system,

hese limits need to be accounted for in the model:

Cbat min = cnbat · DoD

Cbat max = cnbat �5�

here DoD represents the depth of discharge of the battery �the
ercentage of energy that can be drained from the battery without
amaging it�. As the model progresses to subsequent time steps,
he state of charge needs to be updated based on the power gen-
rated and consumed during the previous step, subject to Cbat min
nd Cbat max. If the power generated is greater than the load during
given time step, then the excess electricity is stored in the bat-

ery according to the following equation:

cbat
� �t� = cbat�t − 1� + �pPV�t��PV + pw�t��w −

pload�t�
�l

��ch

cbat�t� = min	cbat
� �t�,Cbat max
 �6�

here cbat�t� is the state of charge of the battery at the end of time
tep t, cbat

� �t� is an intermediate variable, pPV�t� is the power pro-
uced by the PV module during time step t, pw�t� is the power
roduced by the wind turbine during time step t, and pload�t� is the
ower required by the load during time step t. In addition to the
ower generated and that required by the load, there are also
osses associated with the power converters in the system. This

odel uses a central dc bus connected to the battery terminals,
nd each element �PV, wind turbine, and load� is connected to this
us via a power converter. �PV is the efficiency coefficient of the
c/dc converter connecting the PV panels, �w represents the ac/dc
or the wind turbine, and �l represents the dc/ac inverter con-
ected to the load. If the power generated is less than the load
equirement, the battery is used to satisfy the remaining load and
s updated as follows:

cbat
� �t� = cbat�t − 1� + �pPV�t��PV + pw�t��w −

pload�t�
�l

��dis

cbat�t� = max	cbat
� �t�,Cbat min
 �7�

The only difference between the charging and discharging cases
s the efficiency coefficient. In a physical battery, there would be
nergy lost from various causes. However, this model lumps all
nergy losses in the battery and considers them only while charg-
ng. Since all losses are considered while the battery is charging,
he discharge efficiency is set to be 100%. It has been found that

range of 65–85% is an appropriate efficiency value for battery
hroughput �35�.

We note that the battery operation includes an if statement, and
ence a logical disjunction, in its expression. As discussed in Sec.
, this logical disjunction leads to a nonsmooth optimization
odel, presenting a challenge to HPGS design optimization. The
atter will be addressed in Sec. 3.

2.3 Overall System Optimization Model. In this subsection,
e present a HPGS design optimization problem, which deter-
ines the capacity of the three principal components of the sys-

em, i.e., aPV, pw, and cnbat. In the selection of the optimal system
apacity, the cost of the system must typically be balanced by the
eliability of the provided power. In this model, the load is as-
umed to be sensitive and thus cannot afford any loss of power
upply. Accordingly, the reliability of the system does not need to
e penalized as any system resulting in a time step of unsatisfied
oad is treated as infeasible. Therefore, the system can be opti-

ized with respect to cost only.

2.3.1 Cost Objective Function. There are many metrics for

easuring the cost of a HPGS. These include the net present cost,

01007-4 / Vol. 132, OCTOBER 2010
the levelized cost of energy �LCE�, and the life-cycle cost �2�. Of
these three metrics, the LCE has an advantage in terms of units.
The LCE is measured in $/kW h, which is a unit that allows a
comparison between the HPGS and other sources of power. The
other metrics, net present cost and life-cycle cost, are measured in
terms of $, which does not allow for a direct comparison with
grid-based power. Because of this advantage, the LCE will be
used in this case study.

In determining the cost of a HPGS, many factors need to be
accounted for. Each component has an initial cost and some form
of maintenance and operational costs, and it could need replace-
ment before the intended lifetime of the system has passed.
Though all power converters are considered individually with re-
gard to their efficiency, the converters connected to components
are treated as a subunit of that component for the calculation of
costs. This means that the wind generator contains its ac/dc con-
verter and that the PV panels are purchased with their dc/dc con-
verters included in the price. They are also assumed to have the
same expected lifetime, which means that the combination of
component and converter can be considered as one in the cost
calculation. However, this simplification does not apply to the
dc/ac inverter needed to supply the load as it is an independent
component. As such, the inverter’s costs must also be added to the
system, as with the costs of the battery, wind generator, and PV
panels.

2.3.1.1 Initial cost. The initial costs �Cinit� of the components
must include not only the parts costs, but also the installation cost.
To account for this installation fee, a percentage of the purchase
price of the components is added to the initial costs �represented
as 1.2, i.e., 20%� �30�. To calculate the initial cost of a component,
the size �Scomp� must be multiplied by the unit cost of the compo-
nent �Cunit�. As an example, for the wind generator, Cunit has units
of $/W, and Scomp is in watts,

Cinit
wind = 1.2Scomp

wind · Cunit
wind �8�

2.3.1.2 O&M cost. Because fuel is not used in any component
of the HPGS, the only annually recurring cost is the operation and
maintenance �O&M� cost �Com�. This is calculated as a percentage
of the initial cost. As O&M costs are annual costs, the percentage
must be multiplied by the project lifetime �T� and the initial cost
to determine the total O&M cost for a component. Again, taking
the wind generator with a 3% O&M, for example, the O&M cost
is calculated as

Com
wind = 0.03Cinit

windT �9�

2.3.1.3 Replacement cost. Not all components of a HPGS
have expected lifetimes that will meet or exceed the project life-
time. In order to accurately account for this fact, components will
need to be replaced at the end of their respective lifetimes until the
project has reached completion. The PV panels typically will have
the longest life and thus will set T. Other components that will
deteriorate before then need to be replaced. This replacement cost
�Crep� is calculated as follows �36�:

Crep = Cunit · Scomp �
i=1

T
Lcomp �1 + g

1 + d
�i�Lcomp

�10�

where Lcomp is the useful lifetime of the component in years, g is
the inflation rate of component replacements, and d is the discount
rate.

2.3.1.4 Cost calculation. To combine the costs mentioned
above, the variable Ctot is introduced. Ctot is the summation of the
three aforementioned costs for each component in the system:

wind, PV, battery, and inverter,

Transactions of the ASME
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Ctot = Cinit
wind + Com

wind + Crep
wind + Cinit

PV + Com
PV + Cinit

bat + Com
bat + Crep

bat + Cinit
inv

+ Com
inv + Crep

inv �11�
Once the total cost is calculated, the system cost needs to be

etermined on an annual basis. In order to determine the annual
ost �Cann�, Ctot must be multiplied by a constant, the capital re-
overy factor �CRF� as follows �37�:

CRF =
d�1 + d�T

�1 + d�T − 1
�12�

Cann = Ctot · CRF �13�

Once the cost is annualized, the ratio of Cann to the yearly
nergy provided in kW h �Eann� is calculated as the LCE, given by

LCE =
Cann

Eann
�14�

Eann is simply computed by summing all of the energy pro-
uced during the yearly simulation as follows:

Eann = �
i=1

T0

pload�t�dt �15�

here T0 is the number of time steps in the simulation and pload�t�
s the load during a given time step.

2.3.2 Power Demand Constraints. System reliability is often
onsidered in the design of a HPGS. With greater reliability
omes the increased cost associated with more storage and gen-
ration capability. An often used metric of reliability is loss of
ower supply probability �LPSP� �2�. LPSP is a measure of the
ercentage of time a system is not able to supply the required
oad. In order to satisfy zero LPSP �load is always satisfied�, every
ime step needs to be checked to ensure that the energy available
s sufficient to satisfy the load during that period. This is done
sing the following inequality:

cbat�t� − DoD · cnbat + pPV�t� + pw�t� − pload�t� � 0 �16�

here cbat�t−1� is the energy storage in the battery at the start of
he time step t.

As a summary of this subsection, the complete AIO formulation
s presented as follows:

HPGS:min LCE�aPV,pr,cnbat�

with respect to aPV,pr,cnbat,cbat�t�, ∀ t = 1, . . . ,T

such that cbat�t� = BU�cbat�t − 1�,pPV�t�,pw�t�,pload�t��, ∀ t

cbat�t� − DoD · cnbat + pPV�t� + pw�t� − pload�t� � 0, ∀ t

aPV � 0, pr � 0, cnbat � 0 �17�

here BU represents the battery update operation. Note that the
roblem is presented as the sizing optimization of HPGS subject
o demand constraints, where the respective capacities of the three

ajor components are taken as design variables and the LCE is
inimized. The LCE of the HPGS is calculated through Eqs.

8�–�15�, and the reliability of the power supply is evaluated
hrough Eqs. �3�–�7� and �16�.

Methodology
In this section, a MDO-CC approach for the HPGS design is

resented. We first introduce a complementarity reformulation
echnique, which converts the nonsmooth battery update operation
nto a set of CCs, and then present a multidisciplinary decompo-
ition approach that solves the derived optimization problem with

Cs in a decomposed manner.

ournal of Mechanical Design
3.1 Complementarity Reformulation of Nonsmooth
Functions. We note that the battery update operation �Eqs. �6� and
�7��, with the if statement, is logically disjunctive in its nature and
thus could not be directly represented as a smooth model. Here,
we introduce the complementarity reformulation technique for
nonsmooth functions, which converts a piecewise smooth function
into a set of smooth constraints and CCs with smooth component
functions. As a result of this reformulation, optimization problems
with these nonsmooth functions could be solved as MPCCs. Mo-
tivated by recent developments in MPCC solution algorithms,
such reformulation techniques have gained considerable attention
over the past decade �23,38,39�.

Consider a continuous piecewise smooth function F�x� that is a
generalization of the min and max operators as well as the if
statement in the battery update operation:

F�x� = Fi�x� if ai−1 � ��x� � ai, ∀ i = 1, . . . ,m �18�

where ��x� is a switching function, Fi�x� is a smooth function
over ��x�’s range, and a0�a1� ¯ �am are the switching thresh-
olds. The function has an implicit aspect of discrete selection as it
switches between adjacent intervals. In order to facilitate the for-
mulation, we represent the piecewise function as a smooth opti-
mization problem below. Note that the “if” statement in Eq. �18�
is converted to a smooth minimization problem, and F obtained
through Eq. �19� has the same value with that obtained through
Eq. �18� for any x,

F�x� = �
i=1

m

Fi�x�yi

min
yi

�
i=1

m

���x� − ai−1����x� − ai�yi

such that �
i=1

m

yi = 1

yi � 0 �19�

We note that there is no integer requirement on yis, while they
take only discrete values in the optimal solution of Eq. �19�. The
discrete selection is implicitly taken care of by the optimization
problem. By replacing the optimization problem �Eq. �19�� with
its optimality conditions, which are in the format of CCs, we
derive the complementarity reformulation of the piecewise
smooth function:

F�x� = �
i=1

m

Fi�x�yi

���x� − ai−1����x� − ai� − � − si = 0

0 � yi � si � 0

�
i=1

m

yi = 1 �20�

where � and si represent the Lagrange multipliers corresponding
to the summation and non-negativity constraints, respectively. We
note that yis may take fractional values when � is equal to one of
the thresholds. This problem is trivial for the case of continuous
piecewise functions, which are frequently observed in HPGSs.

We note that the battery operation in Eqs. �6� and �7� is an
instance of the continuous piecewise smooth function. Therefore,
it can be reformulated with the above technique. The reformulated

HPGS design problem is presented as follows:

OCTOBER 2010, Vol. 132 / 101007-5
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HPGSAIO-CC:

min f = LCE�aPV,pw,cnbat�

with respect to aPV,pw,cnbat,cbat�t�,cbat
� �t�,snet

− �t�,snet
+ �t�

sb min
− �t�,sb min

+ �t�,sb max
− �t�,sb max

+ �t�, ∀ t = 1, . . . ,T

such that cbat
� �t� − cbat�t − 1� − �− snet

− �t�
1

�dis
+ snet

+ �t��ch��t

= 0, ∀ t

pPV�t��PV + pw�t��w −
pload�t�

�l
− snet

+ �t� + snet
− �t� = 0, ∀ t

0 � snet
− �t� � snet

+ �t� � 0, ∀ t

cbat�t� − cbat
� �t� − sbat min

− �t� + sbat max
− �t� = 0, ∀ t

cbat
� �t� − DoD · cnbat − sbat min

+ �t� + sbat min
− �t� = 0, ∀ t

cnbat − cbat
� �t� − sbat max

+ �t� + sbat max
− �t� = 0, ∀ t

0 � sbat min
− �t� � sbat min

+ �t� � 0, ∀ t

0 � sbat max
− �t� � sbat max

+ �t� � 0, ∀ t

aPV � 0, pw � 0, cnbat � 0 �21�

here the variables with superscripts + and � are artificial vari-
bles introduced to facilitate formulation. They represent the
agrange multipliers of the intermediate optimization problem in

he reformulation. We note that Eq. �21� is an AIO formulation in
hat all the variables are handled in a single problem.

3.2 Multidisciplinary Decomposition of HPGS Design Op-
imization Problem. The implementation of the AIO problem is
traightforward, but the time dependent variables for battery stor-
ge tracking increase the total size of the problem. As the accu-
acy of the simulation increases, the solution of the AIO problem
ay become impractical, undesirable, or even impossible. An al-

ernative to the AIO approach is a decomposition-based approach
8�, where the original AIO problem is decomposed into a set of
nter-related subproblems and solved through an iterative process
f subproblem optimization and coordination among them. Using
he decomposition-based approach can be advantageous as it
reaks the AIO problem into smaller subproblems usually easier
o solve while limiting the communication among subproblems
nly to where necessary via linking variables.

In this subsection, a time horizon decomposition is applied to
he AIO HPGS design problem �Eq. �21��, in which the time ho-
izon 	1, . . . ,T
 is split into n consecutive stages, 	Ti−1
1 , . . . ,Ti
i, i=1, . . . ,n, where T0=0 and Tn=T. The derived

tages are loosely coupled through the capacity variables and the
oundary conditions on the battery storages. Mathematically, this
roblem falls into the category of a quasi-separable MDO-CC and

Fig. 3 The decomposition of multist

mentarity constraints

01007-6 / Vol. 132, OCTOBER 2010
can be solved in a decomposed manner. Specifically, the decom-
posed structure is composed of n individual stage subproblems
�referred to as subsystems�, with the ith subsystem dealing with
the optimization of the HPGS over the ith time period. The capac-
ity variables, aPV, pr, and cnbat, are taken as linking variables
shared by all the subsystems. In addition, we take the battery
storage at the end of each stage cbat�Ti� as linking variables be-
tween subsystems i and i+1 to ensure the consistency of the bat-
tery storage at the transitions of time periods. An illustration of the
multidisciplinary decomposition is shown in Fig. 2.

In order to decompose the AIO problem �Eq. �21��, we intro-
duce a local copy of the linking variables, aPV

�i� , pr
�i�, cnbat

�i� , cbat
�i� �Ti�,

and cbat
�i� �Ti−1� to each relevant stage i. In addition, the inconsis-

tency of a linking variable, i.e., the difference between a linking
variable and one of its local copies, is penalized by the augmented
Lagrangian penalty function: 	�y ,y�i��=v�i��y−y�i��+ �w�i��y
−y�i���2, where y represents one of the above linking variables,
w�i� is a weight factor associated with the consistency constraint
h�i�=y−y�i�=0, and v�i� is an estimate of the Lagrange multiplier
corresponding to h�i�. The subscripts PV, w, bat, i , i+1, and i
+1, i are introduced to differentiate the penalty functions associ-
ated with different linking variables. After the relaxation, the de-
rived, loosely coupled problem is further decomposed into a bi-
level decomposed formulation, illustrated in Fig. 3. The ith stage
of the multistage decomposed formulation is given as

HPGSsub,i:

min f �i� + 
�i� = LCE�aPV
�i� ,pw

�i�,cnbat
�i� � + 
�i�

with respect to 
�i�,aPV
�i� ,pw

�i�,cnbat
�i� ,cbat

�i� �Ti−1�,cbat
�i� �Ti�,cbat�ti�,

∀ ti = Ti−1 + 1, . . . ,Ti − 1

cbat
� �ti�,snet

− �ti�,snet
+ �ti�,sb min

− �ti�,sb min
+ �ti�,sb max

− �ti�

sb max
+ �ti�, ∀ ti = Ti−1 + 1, . . . ,Ti

such that 	�i� = 	PV
�i� �aPV,aPV

�i� � + 	w
�i��pw,pw

�i�� + 	bat
�i� �cnbat,cnbat

�i� �

+ 	i−1,i
�i� �cbat�Ti−1�,cbat

�i� �Ti−1��

+ 	i,i+1
�i� �cbat�Ti�,cbat

�i� �Ti�� � 
�i�

aPV
�i� � 0, pw

�i� � 0, cnbat
�i� � 0

Fig. 2 The multidisciplinary optimization model derived from
time horizon decomposition

optimization problem with comple-
age
Transactions of the ASME
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cbat
� �Ti−1 + 1� − cbat

�i� �Ti−1� + �snet
− �Ti−1 + 1�

1

�dis
− snet

+ �Ti−1

+ 1��ch��t = 0

cbat
� �ti� − cbat�ti − 1� + �snet

− �ti�
1

�dis
− snet

+ �ti��ch��t = 0,

∀ ti = Ti−1 + 2, . . . ,Ti

pPV�ti��PV + pw�ti��w −
pload�ti�

�l
− snet

+ �t� + snet
− �ti� = 0, ∀ ti

cbat�ti� − cbat
� �ti� − sb min

− �ti� + sb max
− �ti� = 0,

∀ ti = Ti−1 + 1, . . . ,Ti − 1

cbat�Ti� − cbat
� �Ti� − sb min

− �Ti� + sb max
− �Ti� = 0

cbat
� �ti� − DoD · cnbat − sb min

+ �ti� + sb min
− �ti� = 0, ∀ ti

cnbat − cbat
� �ti� − sb max

+ �ti� + sb max
− �ti� = 0, ∀ ti

0 � snet
− �ti� � snet

+ �ti� � 0, ∀ ti

0 � sb min
− �ti� � sb min

+ �ti� � 0, ∀ ti

0 � sb max
− �ti� � sb max

+ �ti� � 0, ∀ ti �22�

here 
�i� is an inconsistency variable to maintain the regularity
ondition of the deviation constraints �40�. Note that 	i−1,i

�i� in g1
�i�

s not included in g1
�1�, while 	i,i+1

�i� is not included in g1
�n�.

The formulation of the upper level coordination problem is
iven as

HPGSsys:

min 


with respect to aPV,pw,cnbat

such that 	 = �
i=1

n

�	PV
�i� �aPV,aPV

�i� � + 	w
�i��pw,pw

�i�� + 	bat
�i� �cnbat,cnbat

�i� ��

+ �
i=2

n

	i−1,i
�i� �cbat�Ti−1�,cbat

�i� �Ti−1��

+ �
i=1

n−1

	i,i+1
�i� �cbat�Ti�,cbat

�i� �Ti�� � 
 �23�

3.3 Correspondence Between Stationarity Conditions. This
ubsection is devoted to establishing the correspondence between
he stationarity conditions of HPGSAIO-CC �Eq. �21�� and the com-
ined stationarity conditions of HPGSsub,i �Eq. �22�� and HPGSsys
Eq. �23��. Before proceeding, we provide a definition of strong
tationarity:

DEFINITION 1. For a generalized MPCC problem,

PMPCC:min
x

f�x�

g�x� � 0

such that h�x� = 0

F�x� − s = 0
G�x� − t = 0

ournal of Mechanical Design
0 � s � t � 0 �24�

a point z��x ,s , t� is strongly stationary if and only if there exist
multipliers �� ,� ,�1 ,�2 ,�1 ,�2�, satisfying

�f

0

0
� +

�g 0 0

�h 0 0

�F − I 0

�G − I 0
�

T


�

�

�1

�2

� −  0

�1

�2
� = 0

0 � � � − g�x� � 0

h�x� = 0

F�x� − s = 0

G�x� − t = 0

0 � s � t � 0

��1� j�s� j = 0, ∀ j

��2� j�t� j = 0, ∀ j

if �s� j = �t� j = 0 then ��1� j � 0 and ��2� j � 0, ∀ j

�25�

Suppose A1 ,A2� 	1, . . . ,n
 are the sets of indices correspond-
ing to s and t, respectively. Then, these sets can be employed to
construct a relaxed nonlinear program:

PMPCC-RNLP:min
x

f�x�

such that g�x� � 0

h�x� = 0

G�x� − s = 0

F�x� − t = 0

�s� j = 0, ∀ j � A2
�

�t� j = 0, ∀ j � A1
�

�s� j � 0, ∀ j � A1

�t� j � 0, ∀ j � A2 �26�

The notion of strong-stationarity is intimately related to the
relaxed NLP in that a point is a strong-stationary solution of
PMPCC if and only if it is a stationary point of PMPCC-RNLP �see
Prop. 4.1 �19��. Furthermore, a point satisfies second-order strong-
stationarity conditions of PMPCC if and only if it satisfies second-
order sufficient conditions �SOSCs� for the relaxed NLP
PMPCC-RNLP.

We note that the complementarity formulation of the HPGS
design optimization problem falls into the category of MDO-CC,
whose formulation is given as follows:

PMDO-CC-AIO:

min
y,x1,. . .,xn

�
i=1

n

f i�xi,y�

such that gi�xi,y� � 0, ∀ i = 1, . . . ,n
hi�xi,y� = 0, ∀ i = 1, . . . ,n

OCTOBER 2010, Vol. 132 / 101007-7
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0 � Gi�xi,y� � Fi�xi,y� � 0, ∀ i = 1, . . . ,n �27�

here y represents a vector of linking variables shared by all the
subsystems, and xi represents the vector of local variables only

elevant to subsystem i, i=1, . . . ,n. Additionally, f i�xi ,y� repre-
ents the local objective of subsystem i, which depends on the
inking variables y and the local variables xi. Similarly, local con-
traint functions are given as gi�xi ,y�, hi�xi ,y�, Fi�xi ,y�, and

i�xi ,y�. The objective and constraint functions are assumed to be
wice continuously differentiable functions.

By applying the decomposition technique in the previous sub-
ection, the AIO MDO-CC problem �Eq. �27�� can be decomposed
nto a bilevel formulation similar to the one presented in Fig. 3.
pecifically, the formulation of the ith subsystem and that of the
ystem level problem are shown as follows:

PMDO-CC-Subsys,i: min
yi,xi,
i

f i�xi,yi� + 
i

such that 	i�y,yi� � 
i

gi�xi,yi� � 0

hi�xi,yi� = 0

0 � Gi�xi,yi� � Fi�xi,yi� � 0 �28�

PMDO-CC-Sys:min
y,





such that �
i=1

n

	i�y,yi� � 
 �29�

here yi is a local copy of the linking variables in subsystem i.
We note that complementarity formulation of the HPGS design

ptimization problem �Eq. �21�� is a special case of the MDO-CC
roblem �Eq. �27��; correspondingly, its decomposed formulation
Eqs. �22� and �23�� is a special case of that given in Eqs. �28� and
29� �to see this, let y= �aPV, pw ,cnbat ,cbat�T1� , . . . ,cbat�Tn−1��T and

i= �cbat�Ti−1+1� , . . . ,cbat�Ti−1� ,cbat
� �Ti−1+1� , . . . ,cbat

� �Ti��T�.
herefore, the correspondence between the stationarity conditions
f Eq. �21� and those of Eqs. �22� and �23� follows the correspon-
ence between the stationarity conditions of Eq. �27� and those of
qs. �28� and �29�. The following theorem establishes this corre-
pondence between the first-order stationarity conditions.

THEOREM 1. Let �x1 , . . . ,xn ,y1 , . . . ,yn ,
1 , . . . ,
n ,y ,
� be an
ccumulation of strongly stationary points of PMDO-CC-Subsys,i and
stationary point of PMDO-CC-Sys. If it satisfies y=y1= ¯ =ym,

hen �x1 , . . . ,xm ,y� is a strongly stationary point of PMDO-CC-AIO.
Proof. Note that problem PMDO-CC-Subsys,i can be restated as

ollows:

PMDO-CC-Subsys,i� : min
yi,xi,si,ti,
i

f i�xi,yi� + 
i

such that 	i�y,yi� � 
i, ��i� �30�

gi�xi,yi� � 0, �i� �31�

hi�xi,yi� = 0, ��i� �32�

Gi�xi,yi� − si = 0, ��i1� �33�

Fi�xi,yi� − ti = 0, ��i2� �34�

0 � si � ti � 0 �35�
Following Definition 1, the strong stationarity conditions of
MDO-CC-Subsys,i� in Eq. �30� is given as

01007-8 / Vol. 132, OCTOBER 2010

�yi

f i

�xi
f i

0

0

1
� + � �yi

gi �xi
gi 0 0 0

�yi
	i

T 0 0 0 − 1
�T��i

�i
�

+ �yi
hi �xi

hi 0 0 0

�yi
Gi �xi

Gi − I 0 0

�yi
Fi �xi

Fi 0 − I 0
�

T

 �i

�i1

�i2
� −

0

0

�i1

�i2

0
� = 0

0 � �i � 
i − 	i�y,yi� � 0

0 � �i � − gi�xi,yi� � 0

hi�xi,yi� = 0

Gi�xi,yi� − si = 0

Fi�xi,yi� − ti = 0

0 � si � ti � 0

��i1� j�si� j = 0, ∀ j

��i2� j�ti� j = 0, ∀ j

if �si� j = �ti� j = 0 then ��i1� j � 0 and ��i2� j � 0, ∀ j

�36�

where the symbol � denotes a gradient for scalar functions and
the Jacobian for vector functions. We note that for the last row in
Eq. �36� to be satisfied, the scalar Lagrange multiplier correspond-
ing to the consistency penalty constraint, �i, must be equal to 1.
Therefore, the consistency penalty constraint is active at strongly
stationary points of PMDO-CC-Subsys,i� .

In order to consider the set of strong-stationary conditions of all
the subsystems, we sum up the equations corresponding to yi from
Eq. �36� for each subsystem and derive the following system:

�
i=1

n

�yi
f i + �

i=1

n

�yi
	i + �

i=1

n

��yi
gi�T�i + �

i=1

n �yi
hi

�yi
Gi

�yi
Fi
�

T

 �i

�i1

�i2
� = 0

�37�

The stationarity conditions of PMDO-CC-Sys in Eq. �29� are given
as

�0

1
� + ��

i=1

n

�y	i
T − 1�T

� = 0 �38�

0 � � � 
 − �
i=1

n

	i�y,yi� � 0 �39�

Again, the scalar Lagrange multiplier � has to be 1, so that the last
row in Eq. �38� is satisfied.

Note that under the consistency assumption y=y1= ¯ =ym,
�y

T	i=−�yi

T 	i holds for both the augmented Lagrangian penalty
function and the quadratic penalty function. Substituting this re-
sult into Eq. �38�, we have

�
n

�yi
	i = 0 �40�
i=1
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herefore, the second term in Eq. �37� cancels.
Given y=yi, it is straightforward that

f i�xi,yi� = f i�xi,y�, �yi
f i�xi,yi� = �yf i�xi,y� �41�

imilar results follow for gi, hi, Gi, and Fi.
Summarizing Eqs. �36�, �37�, and �41�, we have


�
i=1

n

�ygi �x1
g1 ¯ �xn

gn 0 0

�
i=1

n

�yhi �x1
h1 ¯ �xn

hn 0 0

�
i=1

n

�yGi �x1
G1 ¯ �xn

Gn − I 0

�
i=1

n

�yFi �x1
F1 ¯ �xn

Fn 0 − I

�
T


�i

�

�1

�2

�

+
�
i=1

n

�yf i

�x1
f1

]

�xn
fn

0

0

� −
0

0

]

0

�1

�2

� = 0

0 � �i � − gi�xi,y� � 0, ∀ i

hi�xi,y� = 0, ∀ i

Gi�xi,y� − si = 0, ∀ i

Fi�xi,y� − ti = 0, ∀ i

0 � si � ti � 0, ∀ i

��i1� j�si� j = 0, ∀ i, j

��i2� j�ti� j = 0, ∀ i, j

if �si� j = �ti� j = 0 then ��i1� j � 0 and ��i2� j � 0, ∀ i, j

�42�

here �= ��1
T , . . . ,�n

T�T, �1= ��11
T , . . . ,�n1

T �T,

�2 = ��12
T , . . . ,�n2

T �T, �1 = ��11
T , . . . ,�n1

T �T, �2 = ��12
T , . . . ,�n2

T �T

ote that Eq. �43� is exactly the strong-stationarity conditions of
he following problem:

PMDO-CC-AIO� :

min
y,x1,. . .,xn

�
i=1

n

f i�xi,y�

such that gi�xi,y� � 0, ∀ i = 1, . . . ,n

hi�xi,y� = 0, ∀ i = 1, . . . ,n

Gi�xi,y� − si = 0, ∀ i = 1, . . . ,n
Fi�xi,y� − ti = 0, ∀ i = 1, . . . ,n

ournal of Mechanical Design
0 � si � ti � 0, ∀ i = 1, . . . ,n �43�

This is just a restatement of PMDO-CC-AIO �Eq. �27��, giving us the
required equivalence result. �

3.4 Solution Algorithm. We note that the decomposed for-
mulation of the MDO-CC problem in Eqs. �23� and �22� is param-
etrized by weighting factors. Solving the decomposed problem
under fixed weights does not usually lead to feasible solutions of
the original AIO problem. Therefore, a weight updating scheme is
necessary so that the successive solutions of the decomposed for-
mulation converge to an optimal solution of the original AIO
problem.

We follow the alternating direction method of multipliers
�16,41�, as shown in Fig. 4: In each iteration, the subsystem
�lower� level subproblems �Eq. �22�� are first solved either se-
quentially or parallel under fixed penalty parameters; then, the
system �upper� level subproblem in Eq. �23� is solved under the
same penalty parameter settings. After that, the penalty parameters
are updated based on the violation of the linking variable consis-
tencies. Under the augmented Lagrangian formulation, the viola-
tion of a consistency constraint h

�

�i�=y�−y
�

�i�=0, where y� repre-
sents one of the linking variables, can be reduced by taking the
corresponding Lagrange multiplier estimate v�

�i� close to the opti-
mal Lagrange multiplier �

�

�i� corresponding to h
�

�i�. In order to
achieve this, a linear updating scheme for selecting vectors v�

�i� is
given by

�v�
�i���k� = �v�

�i���k� + 2�w�
�i���k��w�

�i���k��h�
�i���k�, i = 1, . . . ,p

�44�

where the superscript �k� indicates the value of a variable at the
ith iteration. Additionally, the weight vector is updated following
a linear growth formula:

�w�
�i���k+1� = � · �w�

�i���k�, i = 1, . . . ,p �45�

Finally, we provide some recommendations for the selection of �.
While 2���3 is usually recommended for the augmented La-
grangian approach with nested loop implementation �42,43�, our
numerical experience indicates that a more moderate value is re-
quired for the alternating direction implementation. Generally, 1
���1.1 is recommended for the speed of the convergence.

4 Numerical Study
In this section, a demonstrative HPGS design case study is

presented to validate the presented MDO-CC approach.

4.1 Demonstration Case. We consider a stand-alone hybrid
PV/wind power generation system located at Ersa on Corsica Is-
land, France, which is adopted from a series of papers produced

Fig. 4 Alternating direction method of multiplier for HPGS de-
sign optimization
by Diaf et al. �44,45,30� on HPGS design. The monthly resource
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ata from Ref. �30� are shown in Fig. 5.
A daily simulation is employed to track the performance of the

PGS. In order to generate daily resource data, tools from the
oftware package HOMER were used �46�. HOMER allows users to
nput monthly averages of wind and solar resources and outputs
orresponding synthetic hourly values. For both resources, the
nly values altered from the HOMER defaults were the monthly
verages. Other parameters describing the distributions were left
t the HOMER defaults. The hourly values were then exported from
OMER and summed over 24 h periods to give units of W /m2 day.
hese series were then used as the resource inputs to the model.
In addition to the resource inputs, the required energy to satisfy

he load is also necessary. Because energy demand is often depen-
ent on external factors �e.g., weather conditions�, seasonal aver-
ges were used. The demand for summer, winter, and spring/

Table 1 Battery, invertor, and PV parameters

�ch �dis DoD �l �PV �g

0.75 1 80% 0.95 0.95 0.123

Table 2 Wind generator parameters

Vin Vr Vout �w

2.5 m/s 12 m/s 25 m/s 0.95

Table 3 Cost parameters †47‡

Cunit
�$/W�

Install
�%�

O&M
�%�

Lcomp
�yr� g d

ind 3.00 20 3 20 0.05 0.08
V 4.84 40 1 25 0.05 0.08
atteries 0.190 – – 4 0.05 0.08

nverter 0.713 – 1 10 0.05 0.08

Table 4 The numerical be

Solution setting
No. of function

evaluations �NFE�: Se

AIO 1.135�107

Decomposition: two stages 7.128�106

Decomposition: four stages 6.053�106

Fig. 5 Energy resources at Ersa on Corsica Island, France
01007-10 / Vol. 132, OCTOBER 2010
autumn are 3436, 4230, and 3844 W h/day, respectively.
Another set of necessary inputs are the parameters for the com-

ponent models. These are listed in Tables 1 and 2. Table 3 shows
the pricing parameters used to calculate the cost of the system.
These values will be dependent on system location and local com-
ponent pricing. The parameters g and d were assumed to be the
same for all components, while the other values were component
dependent. For the Install %, O&M %, and Lcomp parameters, the
same assumptions were used as in Ref. �30�. The Cunit values were
averages obtained from an industry website �47�.

4.2 Numerical Results. In order to analyze its numerical be-
havior, the presented approach is applied to the demonstrative
HPGS design optimization case with varying granularity of de-
composition �i.e., number of stages�. For each of the two decom-
position settings tested �two and four stages�, the decomposition
method obtains a solution that is identical to the AIO solution
numerically generated from the same initial point. According to
the obtained solution, the optimal capacities of the three compo-
nents are �aPV, pr ,cnbat�= �3.9439,0.9104,3.0239�, where the
three metrics are in m2, kW, and kW h, respectively. This design
corresponds to a LCE of $0.8397/kW h.

For each decomposition setting, the presented algorithm is ter-
minated when the scaled consistency deviation of the linking vari-
ables:

�
i=1

n

�y − y�i��2

1 + �y�2
�46�

is less then 1�10−6, where y indicates the linking variables. Here,
the problem is scaled so that each element of the linking variable
has a magnitude of 1. The number of function evaluations and the
computation time taken to converge for each setting are presented
in Table 4. Note that the parallel function evaluations are mea-
sured by summing up the maximum number of subsystem func-
tion evaluation out of each iteration. Additionally, the scaled de-
viations between the AIO solutions and the decomposition
solutions,

�xAIO − xdecomp�2

1 + �xAIO�2
�47�

is also presented. Each optimization setting is implemented with
KNITRO

®5.0 solver in MATLAB
®7.2. with a � value of 1.002.

As shown in Table 4, the computation time of the two-stage
decomposition approach is approximately 45% less than the that
of the AIO approach, while the computation time of the four-stage
decomposition approach is slightly less than that of the AIO ap-
proach. This result indicates that there is a trade-off between the
reduced subproblem size and the increased complexity of coordi-
nation. Note that the computation time of the decomposition al-
gorithm is measured under serial implementation; i.e., the compu-
tation time is the summation of all the subsystem computation
time. If the algorithm is implemented in parallel, the computation
time will be much shorter. This work provides a framework for
future application to larger system-of-system problems, such as
optimizing the layout and sizing of a hybrid energy network or

vior of the ALD algorithm

NFE: parallel
Computation

time �s�
Deviation from
AIO solution

– 5.577�103 –
4.354�106 3.104�103 6.37�10−4

2.423�106 5.469�103 8.62�10−4
ha

rial
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nergy farm. For such problems, the decomposed MPCC formu-
ation could show significant improvement over current methods,
hich is addressed in the next section.

Conclusion and Future Works
MDO-CC is an extension to traditional MDO models, which is
otivated by capturing multidisciplinary system working under

and switching among� multiple working modes as well as by
onsidering game equilibriums, such as market competition and
nteraction among multiple design teams in the context of MDO.
his paper presents a MDO-CC approach for HPGS design opti-
ization. HPGS design optimization involves discrete-time simu-

ation with logically disjunctive operations and time dependent
ariables, which usually leads to a nonsmooth model with in-
reased problem size. Therefore, traditional optimization tech-
iques may have difficulties applying to this type of problem. The
resented approach reformulates the logically disjunctive battery
pdate operations into complementarity constraints and employs a
ultidisciplinary decomposition algorithm to solve the reformu-

ated problem. In addition, the correspondence between the sta-
ionarity conditions of the original AIO problem and those of the
ecomposed problem is established. A numerical study of the hy-
rid PV/wind power generation system shows that it converges to
olutions identical to the AIO solutions. Our future work in HPGS
esign optimization will include introducing the wake effect of the
ind module in the energy farm setting and supplemental diesel
ower generation. It would also be an interesting research topic to
onsider the probabilistic performance analysis of the HPGS in
onjunction with a system reliability assessment.
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