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Probabilistic Analytical Target
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Formulation for Multilevel
Optimization Under Uncertainty
Analytical target cascading (ATC) is a methodology for hierarchical multilevel system
design optimization. In previous work, the deterministic ATC formulation was extended to
account for random variables represented by expected values to be matched among
subproblems and thus ensure design consistency. In this work, the probabilistic formula-
tion is augmented to allow the introduction and matching of additional probabilistic
characteristics. A particular probabilistic analytical target cascading (PATC) formulation
is proposed that matches the first two moments of interrelated responses and linking
variables. Several implementation issues are addressed, including representation of
probabilistic design targets, matching responses and linking variables under uncertainty,
and coordination strategies. Analytical and simulation-based optimal design examples
are used to illustrate the new formulation. The accuracy of the proposed PATC formula-
tion is demonstrated by comparing PATC results to those obtained using a probabilistic
all-in-one formulation. �DOI: 10.1115/1.2205870�
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1 Introduction
Optimization of complex systems typically involves a large

number of design variables and coupled multidisciplinary analy-
ses. The so-called all-in-one �AIO� approach, in which a large-
scale optimization problem is formulated and solved with fully
integrated multidisciplinary analyses �MDA�, may not be practical
as the MDA can be computationally expensive at each optimiza-
tion iteration. It may be desirable to decompose the system into a
number of subsystems each represented by an optimization sub-
problem. As illustrated in Fig. 1, a system decomposition can be
hierarchical �Fig. 1�a�� or nonhierarchical �Fig. 1�b��.

Multidisciplinary design optimization �MDO� methodologies
have been developed to support decomposed, distributed optimi-
zation in an effort to maintain disciplinary autonomy under a de-
centralized, multidisciplinary design environment �1,2�. Existing
MDO techniques �3–7� were typically developed for nonhierarchi-
cally decomposed systems. Subsystems are optimized concur-
rently, while a system-level coordinator is used to take into ac-
count subsystem interactions.

Analytical target cascading �ATC� is a methodology developed
for hierarchical multilevel system optimization �8–13�. ATC is
intended primarily for hierarchies decomposed by objects or
physical subsystems rather than by aspects or disciplines �14�, as
it is common in MDO. Each block in the hierarchical structure of
Fig. 1�a� is referred to as an element or a subproblem, which can
have only one parent element, but multiple children elements. The
original problem is decomposed at multiple levels, while interac-
tions among subsystems with the same parent element are consid-
ered and coordinated at the level above. ATC operates by pre-
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specifying system design targets at the top level and formulating
and solving a minimum deviation optimization problem2 for each
element in the hierarchy. The system design targets are often de-
termined by means of enterprise-level decision-making models
�15,16�. The process of cascading system targets to design speci-
fications for subsystems at lower levels of the hierarchy matches
the current way of meeting design targets within a corporate hier-
archical organizational structure.

MDO formulations, including ATC, were originally developed
for deterministic design problems. Incorporating uncertainty in a
MDO formulation is complicated due to the interconnections
among multiple elements that exchange information. Efforts to
extend MDO to account for uncertainty have been based on inte-
grating either robust design principles �17–22� or reliability-based
techniques �23,24� into MDO formulations. However, most of the
research mentioned above is developed for nonhierarchical system
optimization problems, which are formulated as single- or bi-level
problems.

Kokkolaras et al. �25� extended ATC to a probabilistic formu-
lation using expected values to represent random variables com-
municated among elements. An efficient and accurate uncertainty
propagation method was proposed, and although both means and
variances of random variables were estimated for use when solv-
ing the probabilistic design subproblems, only the mean values of
interconnected subproblem responses and linking variables were
matched. However, matching only the mean values of random
variables may be insufficient to ensure design consistency3 under
uncertainty.

In this article, we present a more general probabilistic ATC
�PATC� formulation that can accommodate various representa-
tions of uncertainty in the multilevel problem. Several issues re-

2A minimum deviation optimization problem is an optimization problem that
strives to minimize deviations of actual system responses from assigned target val-
ues.

3Design consistency means that the values of coupling responses and linking

variables are matched among elements.
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lated to the implementation of the proposed PATC formulation are
examined. First, the meaning and representation of design targets
under uncertainty are addressed. In our implementation, we adopt
the quality engineering principle �26� to set the targets for proba-
bilistic characteristics of engineering attributes throughout the hi-
erarchy. Second, matching probabilistic behaviors from interre-
lated elements is addressed. The degree of matching probabilistic
characteristics can have a large impact on efficiency of the process
and accuracy of the computed design. In our implementation, de-
sign consistency is achieved by matching the first two moments of
interrelated responses and linking variables. The accuracy of the
proposed PATC formulation is demonstrated in case studies that
compare the results of a probabilistic all-in-one �PAIO� formula-
tion with those from PATC. Finally, we investigate empirically the
potential impact of the coordination strategy on the convergence
of PATC by comparing solutions and efficiency of both top-down
and bottom-up strategies.

The organization of the article is as follows. In Sec. 2 we briefly
review the deterministic ATC formulation and present a general-
ized PATC formulation. In Sec. 3 we take a close look at issues,
such as uncertainty representation, design consistency, and coor-
dination strategies. In Sec. 4 analytical and simulation-based ex-
amples are used to demonstrate the formulation. Conclusions and
suggestions for future work are presented in Sec. 5.

2 Probabilistic Analytical Target Cascading Formula-
tion

2.1 Review of the Deterministic Formulation. Product de-
velopment includes a process of meeting targets T set by the
enterprise level decision-making models �27�, expressed as a de-
terministic all-in-one �AIO� optimization problem

Given T

find x

to minimize �T − r�x��

subject to g�x� � 0 �1�

The vector x includes all design variables, while the vector r
represents the system’s responses. The vector T includes the target
values for r, fixed during the optimization process. The design
objective is to find a feasible design x that brings the responses r
as close as possible to the assigned targets T. The quality of a
design is measured by the deviation between r and T, using some
�possibly weighted� norm. In this article, we use the l2-norm to
measure deviations, but square the norms in the computational
implementation of the process to avoid derivative discontinuities.

Using the concept of ATC, the AIO problem in Eq. �1� is de-
composed hierarchically into elements at multiple levels. Cou-
pling among elements is captured by linking variables. Linking
variables can be design variables shared among elements with the
same parent or responses from “sibling” elements at the same
level �28�. Each element is a subproblem of a smaller size. Inputs

Fig. 1 System deco
to an element include its local design variables, responses from its
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children elements, linking variables among its children elements,
and linking variables from sibling elements. The design and
analysis models at multiple levels are hierarchical by nature as the
output of a lower-level model becomes the input of a higher-level
model.

The deterministic ATC optimization of element j at level i�Oij�
with nij children is formulated in Eq. �2�. The vector rij represents
the element’s responses. The optimization variables include local
design variables xij, linking variables yij, targets for children re-
sponses r�i+1�k, k=1, ... ,nij, targets for children linking variables
y�i+1�j, and tolerance optimization variables �r and �y to coordi-
nate children responses and linking variables for design consis-
tency. The collective optimization variables will from now on be
referred to as decision variables. Note that element Oij collects all
linking variables of its children in a single vector y�i+1�j. The kth
child of Oij uses a selection matrix S�i+1�k, to identify which com-
ponents of y�i+1�j correspond to the linking variables y�i+1�k of that
child �29�. Similarly, the Oij itself uses its selection matrix Sij to
identify the target values for its linking variables from the vector
yiq

U, where q denotes its parent.

Given rij
U,yiq

U,r�i+1�k
L ,y�i+1�k

L ,Sij,S�i+1�k,k = 1, . . . ,nij

find r�i+1�k,xij,yij,y�i+1�j,�ij
r ,�ij

y , k = 1, . . . ,nij

to minimize �rij − rij
U� + �yij − Sijyiq

U� + �ij
r + �ij

y

subject to �
k=1

nij

�r�i+1�k − r�i+1�k
L � � �ij

r

�
k=1

nij

�S�i+1�ky�i+1�j − y�i+1�k
L � � �ij

y

gij�rij,xij,yij� � 0

where rij = fij�r�i+1�1, . . . ,r�i+1�nij
,xij,yij� �2�

In Eq. �2�, superscripts U indicate targets assigned by the parent
element, while superscripts L indicate values passed from children
elements. The targets for responses and linking variables of ele-
ment Oij are rij

U and Sijyiq
U, respectively. The actual achievable

values, r�i+1�k
L and y�i+1�k

L , are passed up to Oij from its children.

Solving the problem in Eq. �2�, element Oij finds the achievable
values of its responses and linking variables that are the closest to
rij

U and Sijyiq
U, respectively. Oij then passes them back to its parent

element as rij
L and yij

L , respectively. It also determines the optimal
values for its children responses and linking variables with the
least inconsistency from r�i+1�k

L and y�i+1�k
L . These optimal values

are passed down as targets, r�i+1�k
U and y�i+1�j

U .

2.2 Generalized Probabilistic ATC Formulation. In a
probabilistic design optimization formulation, uncertain quantities

osition approaches
are random variables that can be characterized by a probability

Transactions of the ASME



density function �PDF�, a cumulative distribution function �CDF�,
or descriptors such as moments �30�. We use the superscript � to
denote probabilistic characteristics of a random variable. For ex-
ample, for a normally distributed random variable X ,X�

= ��X ,�X�. Still taking the objective as meeting design targets, the
probabilistic AIO �PAIO� optimization formulation is

Given T�

find X�

to minimize �T� − R��

subject to Pr�gm�X� � 0� � �m, m = 1, . . . ,M

with R = f�X� �3�

where M is the number of constraints. In Eq. �3�, capital letters R
and X are used to represent the random variables �instead of r and
x used in Eq. �1��. We assume that an appropriate uncertainty
propagation technique for computing R� is available. Design con-
straints are posed using the probabilistic feasibility formulation
�31�, with �m denoting the required reliability levels. Note that the
system design targets vector T� in Eq. �3� has a different meaning
from T, the targets for deterministic responses in Eq. �1�. In the
presence of uncertainty, T� consists of target values that corre-
spond to the probabilistic characteristics R�. Setting the targets for
probabilistic characteristics is important because variations of sys-
tem performance can lead to customer dissatisfaction and addi-
tional costs to the producer. On the other hand, reducing perfor-
mance variations often causes increase in the cost of product
development. For example, in considering vehicle engine noise
under different operating temperatures, design targets should be
set for both the nominal value of engine noise and its standard
deviation.

Kokkolaras et al. �25� proposed a PATC formulation, in which
expected values �means� are used to represent random variables.
For example, in their formulation the characteristic R� of a ran-
dom response R is a single scalar �the expected value E�R��. Ac-
cordingly, design targets were only defined for the nominal values
of design performance.

In this article, we provide a more general PATC formulation
where any interrelated random variables �responses and linking
variables� are described by general probabilistic characteristics.
The formulation for element j optimization at level i�Oij� with nij
children is shown in Eq. �4� �using comma with additional sub-
script index to denote vector components, e.g., for the con-
straints�.

Given Rij
�,U,Yiq

�,U,R�i+1�k
�,L ,Y�i+1�k

�,L ,Sij,S�i+1�k, k = 1, . . . ,nij

find R�i+1�k
� ,Xij

� ,Yij
� ,Y�i+1�j

� ,�ij
R,�ij

Y ,k = 1, . . . ,nij

to minimize �Rij
� − Rij

�,U� + �Yij
� − SijYiq

�,U� + �ij
R + �ij

Y

subject to �
k=1

nij

�R�i+1�k
� − R�i+1�k

�,L � � �ij
R

�
k=1

nij

�S�i+1�kY�i+1�j
� − Y�i+1�k

�,L � � �ij
Y

Pr�gij,m�Rij,Xij,Yij� � 0� � �ij,m, m = 1, . . . ,M

where Rij = fij�R�i+1�1, . . . ,R�i+1�nij
,Xij,Yij� �4�

The above formulation is generally applicable to all the ele-
ments of the multilevel hierarchy. Nevertheless, top- and bottom-
level problems in PATC are special cases of this formulation. At

the top level of the hierarchy �i=0�, there is only one element O0
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�the element index is thus dropped at this level� and there are no
linking variables; also, the systems’ design targets R0

�,U are de-
fined in the vector T� in Eq. �3�. Elements at the bottom level do
not have any children; thus, the first two constraints in Eq. �4� and
the �-variables are eliminated. The structure of PATC is very simi-
lar to the deterministic one in Eq. �2�, except that the targets on
responses and linking variables in the objective are now expanded
to include probabilistic characteristics of these quantities, and the
consistency constraints are augmented to match individual proba-
bilistic characteristics of children responses and linking variables.

3 PATC Implementation Issues
Three major issues need to be addressed to ensure effective and

efficient implementation of the PATC formulation. The first ques-
tion is what probabilistic characteristics should be used to repre-
sent the system-level responses and how to assign associated tar-
get values. The second issue relates to the choice of probabilistic
characteristics to match all interrelated random responses and
linking variables for ensuring design consistency under uncer-
tainty. These two issues are discussed in Sec. 3.1 as they are both
related to the choice of probabilistic characteristics. This discus-
sion leads to the particular PATC formulation that matches the
first two moments of element responses and linking variables,
presented in Sec. 3.2. The third issue, addressed in Sec. 3.3, re-
lates to choices of coordination strategies for the PATC process,
considering that initial uncertainty information �to be propagated
throughout the multilevel hierarchy during the iterative ATC pro-
cess� may be available at different levels.

3.1 Choice of Probabilistic Characteristics. Random vari-
able representation in a PATC formulation depends on the choice
of probabilistic characteristics. Moments �e.g., mean and vari-
ance� are popular and efficient descriptors of random variables. To
set up targets for probabilistic characteristics, quality engineering
principles can be adopted to meet robustness and reliability targets
on performance at various levels. The robust design principle is
accomplished by bringing the performance mean to its target
while reducing the performance variance �31–33�. Following the
robust design principle, targets can be set for the mean and stan-
dard deviation of design responses, denoted as T� and T� for �R
and �R correspondingly, at the top system level. When consider-
ing design reliability, targets can be set either for a reliability level
� or for a percentile performance �34� corresponding to �.

Determining the target values for system-level probabilistic
characteristics will require introducing an enterprise-driven design
approach �15,16,35,36�, which is not the focus of this study. The
enterprise decision making model captures the impact of quality
engineering characteristics �mean, robustness, reliability, etc.� on
product demand and cost, and sets up the targets based on the
tradeoffs.

In PATC, targets set at the top level are cascaded to lower levels
to guide quality engineering practice throughout the hierarchy. In
particular, if targets for mean and standard deviation are set for
system level performance, cascading targets on mean and standard
deviation throughout the multilevel hierarchy guides robust design
efforts at all levels.

In addition to matching assigned targets from a higher level, it
is critical to also match the interrelated probabilistic characteris-
tics �responses and linking variables� for ensuring design consis-
tency under uncertainty. Matching the whole distribution is im-
practical as the computational cost of the optimization
subproblems would increase substantially. For distributions with
negligible higher-order moments, matching only the first two mo-
ments should be sufficient. Otherwise, the former may need to be
included. In most situations, matching the first four moments
would be sufficient but not affordable as the approximation of

higher order moments requires additional computational effort or
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larger number of samples. Prior knowledge or educated guess of
the distribution type is useful for selecting appropriate character-
istics to match.

3.2 PATC Formulation Based on Matching Mean and
Variance. The particular implementation of the general PATC for-
mulation presented in this article sets targets on mean and stan-
dard deviation for element performance based on robust design
considerations and matches the first two moments of interrelated
responses and linking variables. The information flow of the de-
sign optimization problem for element j at level i �element Oij� is
shown in Fig. 2.

Rij and Yij are vectors of random responses and linking vari-
ables, respectively. Rij are evaluated using analysis or simulation
models Rij = fij�R�i+1�1 , . . . ,R�i+1�nij

,Xij ,Yij�. Targets for mean
and standard deviation of Rij and Yij are assigned by the parent
element as ��Rij

U ,�Rij

U �and ��Yiq

U ,�Yiq

U �, respectively. Achievable
values of mean and standard deviation for Rij and Yij are the
outputs of the optimization problem for element Oij, feeding back
to its parent element as ��Rij

L ,�Rij

L � and ��Yij

L ,�Yij

L �. Similarly,
achievable values of its children element responses and linking
variables are passed to Oij as ��R�i+1�k

L ,�R�i+1�k
L � and

��Y�i+1�k
L ,�Y�i+1�k

L �, and must be taken into account for consistency.

The optimization problem for element Oij is solved to find the
optimum values of the probabilistic characteristics �not limited to
the first two moments� of its local design variables Xij and to
determine the target values for the responses and linking variables
��R�i+1�k

U ,�R�i+1�k
U � and ��Y�i+1�j

U ,�Y�i+1�j

U �, respectively, of its children

elements.

Given �Rij

U ,�Rij

U ,�Yiq

U ,�Yiq

U ,�R�i+1�k

L ,�R�i+1�k

L ,�Y�i+1�k

L ,

�Y�i+1�k

L ,Sij,S�i+1�k, k = 1, . . . ,nij

find �R�i+1�k
,�R�i+1�k

,Xij
� ,�Yij

,�Yij
,�Y�i+1�j

,�Y�i+1�j
, �ij

�R,�ij
�R,

�ij
�Y,�ij

�Y, k = 1, . . . ,nij

to minimize ��Rij
− �Rij

U � + ��Rij
− �Rij

U � + ��Yij
− Sij�Yiq

U �

+ ��Yij
− Sij�Yiq

U � + �ij
�R + �ij

�R + �ij
�Y + �ij

�Y

subject to �
k=1

nij

��R�i+1�k
− �R�i+1�k

L � � �ij
�R

�
k=1

nij

��R�i+1�k
− �R�i+1�k

L � � �ij
�R

�
nij

�S�i+1�k�Y�i+1�j
− �Y�i+1�k

L � � �ij
�Y

Fig. 2 Information flow fo
k=1
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�
k=1

nij

�S�i+1�k�Y�i+1�j
− �Y�i+1�k

L � � �ij
�Y

Pr�gij,m�Rij,Xij,Yij� � 0� � �ij,m, m = 1, . . . ,M

where, Rij = fij�R�i+1�1, . . . ,R�i+1�nij
,Xij,Yij� �5�

We emphasize that Eq. �5� is a particular PATC formulation.
Even though targets and interrelated random variables are
matched using the first two moments, the probabilistic character-
istics of local random variables Xij are not restricted to the first
two moments. It should also be noted that in the above formula-
tion the number of optimization variables is approximately twice
as large relative to that of the formulation in Kokkolaras et al. �25�
since each random variable is represented by more than one de-
scriptor.

3.3 Coordination Strategies. Similar to deterministic ATC,
PATC is an iterative process of solving optimization subproblems
until deviations of probabilistic system responses from targets
cannot be reduced any further without violating system consis-
tency. This iterative process requires an appropriate coordination
strategy to ensure convergence. Michelena et al. �37� proved the
convergence properties of the deterministic ATC formulation for a
specific class of coordination strategies under standard convexity
and smoothness assumptions. In the work of Haftka et al. �38�,
much milder conditions for convergence are presented for a quasi-
separable structure of multidisciplinary optimization problems.
The applicability of these conditions to ATC is subject of future
investigations.

When dealing with uncertainties that propagate throughout the
multilevel hierarchy, one question is at which level the PATC
process should begin. From an organization’s viewpoint, the de-
sign process should start from the highest level, as usually overall
targets are assigned and cascaded down from top to bottom. On
the other hand, it may be beneficial to start at the level where
uncertainty cannot be reduced, i.e., at the level where we cannot
control the variation of random inputs. Typically, this occurs at the
bottom level, where most random design variables have known
distributions. The bottom-up coordination strategy imitates the un-
certainty propagation process. In this study, both strategies are
tested to investigate whether the starting level has an impact on
convergence speed and solution accuracy. Note that we have not
conducted a theoretical study of convergence properties.

4 Examples
The first example is the geometric programming problem

adopted from Kim et al. �8�. The second example is the V6 gaso-
line engine design problem considered in Kokkolaras et al. �25�.
The major objective of the case studies is to investigate the accu-
racy of the proposed particular PATC formulation by comparing
results obtained using it to those obtained using the PAIO formu-
lation. It is expected that the particular PATC should yield the

articular PATC formulation
same optimal solution as the fully integrated methods when the
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first two moments can sufficiently represent the impact of uncer-
tainties throughout a hierarchy. A preliminary investigation on co-
ordination strategies, top-down and bottom-up, is also conducted.

4.1 Geometric Programming Problem.

4.1.1 Problem Formulation. Geometric programming prob-
lems with polynomials �polynomials with positive constants� are
known to have a unique global optimum �39�. The deterministic
AIO and ATC formulations of the geometric programming prob-
lem are provided in Kim et al. �8�. The PAIO problem is formu-
lated in Eq. �6�, and the purpose of solving it is to verify whether
the PATC is capable of reaching the same optimal solution. In Eq.
�6�, capital letters are used to represent random variables, while
lower cases are kept for deterministic quantities or realizations of
random variables.

Given T�X1,T�X1,T�X2,T�X2,�X8
,�X11

find x4,x5,x7,�X8
,x9,x10,�X11

,x12,x13,x14 � 0

to minimize �T�X1 − �X1
�2 + �T�X1 − �X1

�2 + �T�X2 − �X2
�2

+ �T�X2 − �X2
�2

subject to Pr�gi � 0� � �i,i = 1, . . . ,6

where X1 = �X3
2 + x4

−2 + x5
2�1/2 X2 = �x5

2 + X6
2 + x7

2�1/2

X3 = �X8
2 + x9

−2 + x10
−2 + X11

2 �1/2 X6 = �X11
2 + x12

2 + x13
2 + x14

2 �1/2

g1 =
X3

−2 + x4
2

x5
2 − 1, g2 =

x5
2 + X6

−2

x7
2 − 1, g3 =

X8
2 + x9

−2

X11
2 − 1

g4 =
X8

−2 + x10
2

X11
2 − 1, g5 =

X11
2 + x12

−2

x13
2 − 1, g6 =

X11
2 + x12

2

x14
2 − 1

�6�
In this example, the target values for the mean and the standard

deviation of the system response �X1 ,X2� were �T�X1 ,T�X2�
= �0,0� and �T�X1 ,T�X2�= �0,0�. These overall system targets are
denoted as �T� ,T�� in the later part of this subsection. We assume
that design variables X8 and X11 are independent and normally
distributed with constant standard deviations �X8

=�X11
=0.1. The

required reliability level � is 99.865% for all probabilistic
constraints.

The functional dependencies in Eq. �6� are used to decompose
the problem into a bi-level hierarchy with two elements at the
bottom level. The associated information flow is shown in Fig. 3.

Fig. 3 Information flow in the bi-level
programming problem
The randomness in X8 and X11 results in uncertainties in all com-
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puted responses, each described by its mean and standard devia-
tion. Setting R0,1=X1 ,R0,2=X2 ,x0= �x4 ,x5 ,x7� ,R11=X3, and R12
=X6, the top-level �i=0� responses are computed by

R0 = �R0,1

R0,2
� = f0�R11,R12,x0� = ��R11

2 + x4
−2 + x5

2�1/2

�x5
2 + R12

2 + x7
2�1/2 � �7�

where a comma and additional index denote vector component.
The vectors of local design variables of two bottom-level ele-

ments �O11 and O12� are set as �X8 ,x9 ,x10� and �x12,x13,x14�, re-
spectively. Since elements O11 and O12 share the random design
variable X11, it becomes a random linking variable, i.e., Y11=X11
and Y12=X11. The two bottom-level �i=1� element responses are
computed by

R11 = f11�X8,x9,x10,Y11� = �X8
2 + x9

−2 + x10
−2 + X11

2 �1/2 �8�

and

R12 = f12�x12,x13,x14,Y12� = �X11
2 + x12

2 + x13
2 + x14

2 �1/2 �9�
The primary goal of this example is to test the effectiveness of

the proposed particular PATC method. We use Monte Carlo simu-
lation �MCS� to evaluate the first two moments of responses to
avoid the influence caused by approximation methods. All proba-
bilistic constraints are evaluated by the moment-matching
method:

�g + k�g � 0, �10�

where k is a constant. Corresponding to the required reliability
level set at 99.865%, k is equal to 3 in this example. �g and �g are
also obtained by MCS. The probabilistic optimization models for
the three elements O0 ,O11, and O12 in Fig. 3 under the particular
PATC formulation are formulated in Eqs. �11�–�13�, respectively.
Note that since the standard deviation of the random design vari-
able X11 is assumed constant �i.e., cannot be controlled�, it is not
included as an decision variable. In general, if we cannot control
the standard deviation of a random response or a linking variable,
we are forced to omit the corresponding standard deviation from
the particular moment-matching formulation of Eq. �5�.

O0: Given T�,T�,�R11

L ,�R11

L ,�R12

L ,�R12

L ,�Y11

L ,�Y12

L

find x4,x5,x7,�R11
,�R11

,�R12
,�R12

,�Y1
,��R,��R,��Y � 0

to minimize �T� − �R �2
2 + �T� − �R �2

2 + ��R + ��R + ��Y

rarchical decomposition of geometric
hie
0 0
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subject to ��R11
− �R11

L �2 + ��R12
− �R12

L �2 � ��R

��R11
− �R11

L �2 + ��R12
− �R12

L �2 � ��R

��Y1
− �Y11

L �2 + ��Y1
− �Y12

L �2 � ��Y

�g1
+ 3�g1

� 0

�g2
+ 3�g2

� 0

where, R0 = �R0,1

R0,2
� = ��R11

2 + x4
−2 + x5

2�1/2

�x5
2 + R12

2 + x7
2�1/2 �

g1 =
R11

−2 + x4
2

x5
2 − 1, g2 =

x5
2 + R12

−2

x7
2 − 1 �11�

O11:Given �R11

U ,�R11

U ,�Y1

U ,�Y1

U ,�X8
,�Y11

�=�X11
�

find �X8
,x9,x10,�Y11

� 0

to minimize ��R11
− �R11

U �2 + ��R11
− �R11

U �2 + ��Y11
− �Y1

U �2

subject to �g3
+ 3�g3

� 0

�g4
+ 3�g4

� 0

where R11 = �X8
2 + x9

−2 + x10
−2 + Y11

2 �1/2

g3 =
X8

2 + x9
−2

Y11
2 − 1, g4 =

X8
−2 + x10

2

Y11
2 − 1 �12�

O12:Given �R12

U ,�R12

U ,�Y1

U ,�Y1

U ,�Y12
�=�X11

�

find �Y12
,x12,x13,x14 � 0

to minimize ��R12
− �R12

U �2 + ��R12
− �R12

U �2 + ��Y12
− �Y1

U �2

subject to �g5
+ 3�g5

� 0

�g6
+ 3�g6

� 0

where R12 = �Y12
2 + x12

2 + x13
2 + x14

2 �1/2

g5 =
Y12

2 + x12
−2

x13
2 − 1, g6 =

Y12
2 + x12

2

x14
2 − 1 �13�

Both top-down and bottom-up coordination strategies were
tested. Starting from the top level requires an initial guess of
��Y11

U ,�Y12

U � and ��Y11

U ,�Y12

U � when solving O11, and O12 for the
first time. Starting from the bottom level required an initial guess
of ��R11

U ,�R12

U � and ��R11

U ,�R12

U � when solving O0 for the first time.
For this example, the obtained optimal solutions were identical
under both coordination strategies. The completion of optimiza-

Table 1 Comparison of optimal designs

Initial Point PAIO PATC

x4
5.0 0.7599 0.7597

x5
5.0 0.8676 0.8659

x7
5.0 0.9208 0.9209

�X8
5.0 1.1984 1.2013

x9
5.0 0.8098 0.7912

x10
5.0 0.7350 0.7229

�X11
5.0 1.4931 1.4737

x12
5.0 0.8409 0.8419

x13
5.0 2.1333 2.1080

x14
5.0 1.9606 1.9344
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tions in all elements is considered as one PATC cycle.

4.1.2 PATC Results. For each MCS, 10,000 samples were
used. When the maximum value of deviation terms on � in O0 was
within allowable tolerance �1.0	10−4�, and when each element
optimization converged successfully, the whole PATC process was
considered to have converged to an optimal design. The optimi-
zation algorithm used is sequential quadratic programming. For
the specified tolerance of consistency �1.0	10−4�, 136 cycles
were used to reach the convergence for both top-down and
bottom-up strategies. The optimal design and system-level re-
sponses obtained by starting the PATC from the top level are listed
in Tables 1 and 2, respectively. Table 3 compares targets assigned
by O0 for the mean of the linking variable and the actual values
obtained by O11 and O12.

The PAIO solutions are included to verify the accuracy of the
proposed PATC formulation. Tables 1 and 2 show that PATC con-
verges to the same optimal solution as that obtained by PAIO.
Table 3 shows that the optimal mean value of the shared design
variable between the two coupled elements O11 and O12 is
consistent.

Since only the first two moments were matched during the
PATC process, the optimal solution was verified by substituting
the optimal design point back into fully integrated analysis models
in PAIO and computing the true values of ��R0,1

* ,�R0,2

* � and

��R0,1

* ,�R0,2

* �. The results are listed in the last column in Table 2.
They are sufficiently close to those from PATC, indicating that the
use of the first two moments for matching probabilistic behaviors
is sufficient for this example. True distributions of R11 and R12
obtained from MCS using 100,000 samples are compared to those
incorporating the first two moments only �i.e., assuming normal
distributions in O0� in Fig. 4. These plots further illustrates that
matching the first two moments in PATC is sufficient in this case
as the higher-order �the third order and above� moments of lower-
level element responses R11 and R12 are all quite small and the
linking variable X11 is also normally distributed. To investigate
how close a distribution is to a normal distribution, a normal
probability plot �40� was used �not included in this article�. It was
found that both R11 and R12 can be considered asnormally
distributed.

PATC reached the same optimum when starting from different
initial points. We tested different values of weighting factors for
the terms of the objective function in the problem formulation for
element O0. If weighing factors for the consistency terms ��� are
too large, e.g., 1000, the PATC formulation quickly converges to a
consistent but suboptimal solution. With constant weighting fac-
tors, we observed that PATC converges to the global optimum, but
many cycles are needed to fine-tune the search so as to meet the

Table 2 Comparison of optimal solutions

PAIO PATC
Confirmed PATC

Solution

��R0,1

* ,�R0,2

* � �3.0875, 3.5968� �3.1019, 3.5599� �3.1006, 3.5488�

��R0,1

* ,�R0,2

* � �0.0874, 0.0417� �0.0862, 0.0414� �0.0860, 0.0413�

Objective
function

22.4790 22.3038 22.2168

Table 3 Comparison of linking variable mean values

Target Value by O0 Actual Value at O11 Actual Value at O12

Linking
variable

1.4735 1.4834 1.4640
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DF
consistency of children elements optimization.
Although not shown explicitly in the formulations, weighting

factors are introduced to capture tradeoffs among different devia-
tion terms in the objective function and consistency constraints.
Comparing to the fully integrated method, the PATC is usually
more sensitive to weighting factors as relative importance needs
to be determined not only among top-level responses but also
among responses from lower levels. Moreover, in each element,
weighting factors needs to be specified not only for different re-
sponses but also for matching linking variables, and other toler-
ance variables. Therefore, more efforts are needed to assigning
weighting factors in the PATC. A heuristic adaptive weighting
scheme that increases the values of weighting factors for the de-
viation terms on � with the increase of PATC cycles was used in
this work. A formal method for setting proper weights for element
responses and linking variables in deterministic ATC can be found
in Michalek et al. �29�, Tosserams et al. �41�, and Kim et al. �42�.

4.2 Piston-Ring/Cylinder-Liner Design Problem.

4.2.1 Problem Formulation. To investigate the validity of
moment-matching when element responses are known to be not
normally distributed, and to investigate the performance of top-
down and bottom-up coordination strategies, we use the same
example as in Kokkolaras et al. �25�. The piston-ring/cylinder-
liner subassembly is designed to minimize fuel consumption of a
V6 engine while satisfying reliability requirements on oil con-
sumption, blow-by, and liner wear rate. A target reliability level is
chosen as 99.87%, corresponding to a reliability index as 3. The
PAIO problem formulation is given in Eq. �14�.

Given T�,T�,�X1
,�X2

find �X1
,�X2

,x3,x4

to minimize �T� − �Rfuel
�2 + �T� − �Rfuel

�2

subject to Pr�Rwear � 2.4 	 10−12 m3/s� � 99.87%

Pr�Rblow by � 4.25 	 10−5 kg/s� � 99.87%

Pr�Roil � 15.3 g/hr� � 99.87%

4 �m � �X1
� 7 �m,4 �m � �X2

� 7 �m

Fig. 4 Comparison of actual C
80 GPa � x3 � 340 GPa, 150 BHV � x4 � 240 BHV
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where Rfuel = f fuel�Rpower loss�, Rpower loss

= fpower loss�X1,X2,x3,x4�,

Rwear = fwear�X1,X2,x3,x4�,Rblow by = fblow by�X1,X2,x3,x4�,

Roil = foil�X1,X2,x3,x4� . �14�
The targets for the top system performance �fuel consumption�

were set as �T� ,T��= �0,0�. The random design variables X1 and
X2 denote piston-ring and cylinder-liner surface roughness, re-
spectively. Based on measurements, they are normally distributed
with �X1

=�X2
=1 �m. The deterministic design variables x3 and

x4 denote Young’s modulus and hardness of the liner material,
respectively. There are three reliability constraints related to the
subassembly’s performance, i.e., liner wear rate �Rwear�, blow-by
�Rblow by�, and oil consumption �Roil�.

The problem is decomposed into a two-level hierarchy with
only one element at each level. The four design variables in Eq.
�14� are inputs to the bottom-level element, whose responses R1
include power loss due to ring/liner friction �Rpower loss�, liner wear
rate �Rwear�, blow-by �Rblow by�, and oil consumption �Roil�. The
top-level element takes only the power loss response R1,1
�=Rpower loss� as input and provides fuel consumption as the system
level response R0�=Rfuel�. Once again, a comma and additional
subscript index denotes a vector component.

Following the PATC formulation presented in Sec. 3.2, the
mean and standard deviation are selected as the probabilistic char-
acteristics for responses. The top level problem O0 is formulated
in Eq. �15�. Because there is only one element at each level, there
are no linking variables in this example. PATC constraints in O0
are used to ensure consistency of child element responses with
obtained targets.

O0:Given T�,T�,�R1,1

L ,�R1,1

L

find �R1,1
,�R1,1

,��,��

to minimize �T� − �R0
�2 + �T� − �R0

�2 + �� + ��

subject to ��R1,1
− �R1,1

L �2 � ��

��R1,1
− �R1,1

L �2 � ��

s of responses of O11 and O12
where R0 = Rfuel = f0�R1,1� . �15�
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O1:Given �R1,1

U ,�R1,1

U ,�X1
,�X2

find �X1
,�X2

,x3,x4

to minimize ��R1,1
− �R1,1

U �2 + ��R1,1
− �R1,1

U �2

subject to

Pr�Rwear � 2.4 	 10−12 m3/s� � 99.87%

Pr�Rblow by � 4.25 	 10−5 kg/s� � 99.87%

Pr�Roil � 15.3 g/hr� � 99.87%

4 �m � �X1
� 7 �m,4 �m � �X2

� 7 �m

80 GPa � x3 � 340 GPa, 150 BHV � x4 � 240 BHV,

where R1 = 	
R1,1

R1,2

R1,3

R1,4


 = 	
Rpower loss

Rwear

Rblow by

Roil


 = f1�X1,X2,x3,x4� .

�16�

The formulation of the bottom level element O1 according to
the PATC process is shown in Eq. �16�. The problem for element
O1 is solved by the sequential optimization and reliability assess-
ment �SORA� method �43�. The means and standard deviations in
Eqs. �15� and �16� were evaluated by MCS. To ease the compu-
tational burden, the analysis models in O0 and O1 are surrogate
models built using the cross-validated moving least squares
method �25�. The convergence criteria for the PATC were the
same as those for Example 1. For comparison, the PAIO problem
was also solved using the SORA method �43�.

4.2.2 PATC Results. Two probabilistic optimization scenarios
were examined. In the first scenario, the mean and standard de-
viation values are used in the objective functions of the PAIO �Eq.
�14�� and PATC problems �Eqs. �15� and �16�� without normaliza-
tion. The optimal solution results using top-down and bottom-up

Table 4 Comparison of optimal designs „scenario 1—using
non-normalized objective functions…

Design
variable Description

Initial
point PAIO

PATC
�top-down�

PATC
�bottom-up�

�X1
��m� Ring surface

roughness
1.0 4.0 4.0063 4.0

�X2
��m� Liner surface

roughness
1.0 6.1193 6.1130 6.1193

x3�GPa� Liner Young’s
modulus

100 80 80.0445 80

x4 �BHV� Liner hardness 100 240 240 240

Table 5 Comparison of optimal objective fun
objective functions…

PAIO
PATC

�top-down�

objj
* 2.8554	10−1 2.8537	10−1

�Rfuel

* 5.343	10−1 5.3375	10−1

�Rfuel

* 8.391	10−3 8.6527	10−3

�Rpower loss

* 3.922	10−1 3.9175	10−1

�Rpower loss

* 3.448	10−2 3.5163	10−2
998 / Vol. 128, JULY 2006
strategies are listed in Tables 4 and 5.
As shown in Table 4, the two coordination strategies lead to the

same optimal design, which is also the same as that from the
PAIO formulation. In Table 5, the optimal response moments un-
der columns “PATC” are confirmed by substituting the optimal
points back into the PAIO fully integrated analysis models for
Rfuel and Rpower loss. The values of obj* were computed as �T�

−�Rfuel

* �2+ �T�−�Rfuel

* �2. The confirmed solutions in Table 5 are
very close to those from PATC and PAIO, indicating that use of
the first two moments for matching probabilistic behaviors is suf-
ficient for this example.

The variance of fuel consumption in Table 5, �Rfuel

* , is very

small compared to the optimal mean value �Rfuel

* . Using non-
normalized objective functions in Eq. �15� is biased towards mini-
mizing the mean of fuel consumption. The results obtained are
meaningful because they are close to those from �25�, which were
obtained only considering the mean values of probabilistic perfor-
mance. Based on 100,000 samples from MCS, the actual reliabili-
ties of three probabilistic constraints on liner wear rate, blow by,
and oil consumption are 100%, 100%, and 99.83%, respectively.

To overcome the above bias caused by different scales of the
mean and standard deviation values, in the second scenario, the
mean and standard deviation values in the objective functions of
the PAIO and PATC problem formulations were normalized. The
mean and standard deviation terms of the top-level element re-
sponse �fuel consumption� in O0 are normalized by their best
achievable values, �Rfuel

min =0.5359 and �Rfuel

min =0.0033, respectively.
Similarly, the mean and standard deviation terms of the bottom-
level element response �power loss� in O1 are normalized with
�Rpower loss

min =0.3916 and �Rpower loss

min =0.0129. The obtained optimal

design and objective values from the PATC are compared with
those from the PAIO in Tables 6 and 7.

In scenario 2, top-down and bottom-up strategies also con-
verged to identical optimal points and the confirmed optimal ob-
jective values are very close to those from the PAIO. Using the
normalized objective functions results in emphasizing the stan-
dard deviation of fuel consumption, and the probabilistic optimi-
zation reaches a different optimal solution from that found in the
first scenario. For this bi-level problem with only one element at
each level, the top-down PATC converges after two cycles while

n values „scenario 1—using non-normalized

Confirmed
solution

�top-down�
PATC

�bottom-up�

Confirmed
solution

�bottom-up�

.855	10−1 2.8537	10−1 2.8549	10−1

.3429	10−1 5.3375	10−1 5.3425	10−1

.3825	10−3 8.6527	10−3 8.3911	10−3

.9234	10−1 3.9159	10−1 3.9218	10−1

.4438	10−2 3.5204	10−2 3.4478	10−2

Table 6 Comparison of optimal designs „scenario 2—using
normalized objective functions…

Design
variable Description

Initial
point PAIO

PATC
�top-down�

PATC
�bottom-up�

��X1
���m� Ring surface

roughness
1.0 7.0 7.0 7.0

��X2
���m� Liner surface

roughness
1.0 7.0 7.0 7.0

x3�GPa� Liner Young’s
modulus

100 340 340 340

x4�BHV� Liner hardness 100 234.7299 234.7299 234.7299
ctio

2
5
8
3
3
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the bottom-up PATC converges after one cycle.
The actual PDF of the power loss is plotted and compared to a

normal PDF in Fig. 5 for both scenarios. In both cases, the actual
PDF of the power loss has two modes. However, matching the
first two moments in PATC seems to be sufficient for this example
and can lead to the same solution as that of the PAIO. The main
reason is that the top-level analysis model f fuel �Rpower loss� is
nearly linear. The first two moments of fuel consumption are close
to linear functions of the first two moments of power loss, regard-
less of the actual distribution of the power loss. Therefore, even
for nonlinear models, it is sufficient to consider the first two mo-
ments as long as the first two moments of lower-level responses
dominate the uncertainty propagation on higher-level responses.

Because the objective functions of the optimization problems
for elements at various levels usually involve multiple deviation
items, we find that special care must be taken when selecting the
starting point, weighting factors, and normalization technique.
Different starting points should be used if local optima are sus-
pected. For the tolerance variables ��� and ���, weighting factors
can neither be too large nor too small. Large weights may trap the
optimum at a consistent but inferior solution after the first few
cycles, while small weights may cause slow convergence to a
consistent solution.

5 Conclusions
We extended previous work on ATC under uncertainty to a

more general formulation. Specifically, we addressed the issue of
dealing with design targets in a probabilistic framework, and, fol-
lowing established quality engineering principles, we proposed a
particular PATC formulation that matches the first two moments
of random responses and linking variables with assigned targets.

Table 7 Comparison of optimal objective fun
jective functions…

PAIO
PATC

�top-down�

obj* 1.9326	10−1 1.9074	10
�Rfuel

* 5.5131	10−1 5.5016	10−1

�Rfuel

* 3.0855	10−3 3.0487	10−3

�Rpower loss

* 4.6008	10−1 4.5555	10−1

�Rpower loss

* 1.1863	10−2 1.1615	10−2
Fig. 5 Verification of distributions
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An important issue related to the accuracy of the design com-
puted using PATC is how many moments are sufficient to match
random responses and linking variables. Based on our empirical
studies using two examples, when matching the first two moments
of random variables, PATC converges to the same optimal solu-
tion as PAIO under two conditions: �1� When the distributions of
all matching quantities are close to normal distributions �i.e., the
true mean and variance of matching quantities are close to those
of assumed normal distributions, as observed in the geometric
programming problem�, and �2� when the first two moments to be
matched have dominating impact on the optimal solution, as ob-
served in the ring/liner problem; otherwise, PATC may lead to a
different optimum with an inferior objective function value. In
that case, higher-order moments may need to be included and
matched in the PATC formulation. Similarly, targets on correlation
parameters between performance responses that are not indepen-
dent with respect to the same uncertainty source should be con-
sidered. On the other hand, including additional targets increases
the dimension of the parent element optimization problem.

We also need to point out that the PATC objective functions
often involve multiple deviation terms. When multiple optimal
solutions exist, a situation that occurs often in robust design,
PATC yields the same optimal objective function value as that
from PAIO, but the two approaches may yield different optimal
designs. As with ATC and nonlinear optimization problems in
general, local solutions may be obtained by PATC.

Future research may be conducted in the following directions.
First, distributions of random variables in PATC are usually not
known beforehand, and so it is desirable to create an efficient
technique to determine when higher-order moments are necessary.
Second, the number of decision variables in each optimization
subproblem increases when higher-order moments are matched.

on values „scenario 2—using normalized ob-

Confirmed
solution

�top-down�
PATC

�bottom-up�

Confirmed
solution

�bottom-up�

1.9369	10 1.8629	10 1.9369	10
.5132	10−1 5.5100	10−1 5.5132	10−1

.0931	10−3 2.9615	10−3 3.0931	10−3

.6011	10−1 4.5902	10−1 4.6011	10−1

.1892	10−2 1.1005	10−2 1.1892	10−2
cti

5
3
4
1

of power loss in two scenarios
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The impact of the number of moments used on convergence rate
must be assessed. Third, convergence properties of alternative co-
ordination strategies should be investigated. Finally, techniques
can be developed to identify multiple solutions in upper-level
problems so that multiple candidate targets can be used to explore
the design solutions in lower-level problems.
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