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Increasing penetration of volatile wind-based generation into the fuel mix is leading to growing supply-side
volatility. As a consequence, the reliability of the power grid continues to be a source of much concern,
particularly since the impact of supply-side risk exposure, arising from aggressive bidding,1 is not felt by
risk-seeking generation firms; instead, the system operator is largely responsible for managing shortfalls
in the real-time market. We propose an alternate design in which the cost of such risk is transferred to firms
responsible for imposing such risk. The resulting strategic problem can be cast as a two-period generalized
stochastic Nash game with shared strategy sets. A subset of equilibria is given by a solution to a related
stochastic variational inequality, that is shown to be both monotone and solvable. Computing solutions of
this variational problem is challenging since the size of the problem grows with the cardinality of the sample
space, network size and the number of participating firms. Consequently, direct schemes are inadvisable
for most practical problems. Instead, we present a distributed regularized primal–dual scheme and a dual
projection scheme where both primal and dual iterates are computed separately. Rates of convergence
estimates are provided and error bounds are developed for inexact extensions of the dual scheme. Unlike
projection schemes for deterministic problems, here the projection step requires the solution of a possibly
massive stochastic programme. By utilizing cutting plane methods, we ensure that the complexity of the
projection scheme scales slowly with the size of the sample space. We conclude with a study of a 53-node
electricity network that allows for deriving insights regarding market design and operation, particularly
for accommodating firms with uncertain generation assets.

Keywords: variational inequalities; stochastic programming; Nash games; projected gradient schemes;
cutting plane methods

1. Introduction

As electricity markets gravitate towards regimes where intermittent renewables such as wind
power are an integral part of a firm’s generation mix, the associated reliability of power markets
in the real-time setting assumes increasing relevance. Currently, most markets operate a day-
ahead and a real-time market. Of these, the day-ahead market is a financially binding market that
provides generators with an operating schedule prior to the real-time settlement. The real-time
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2 A. Kannan et al.

market provides an economically optimal schedule that accords with changes in load, generation
and system conditions after the settlement of the day-ahead market.

A majority of market designs employs financial penalties, referred to as deviation penalties, in
an effort to reduce deviations from day-ahead bids. These penalties, in part, are expected to aid in
covering the cost of real-time shortfall when generators do indeed fail to generate at contracted
levels. But, generators are currently not charged for imposing risk. In fact, regardless of whether
such deviations occur, the system operator often has to hold reserves in an effort to maintain grid
reliability. But, the cost of holding reserves remains unpriced by the market and the independent
system operator (ISO) is responsible for holding reserves. As wind power makes increasingly
deep inroads, the bidding behaviour of wind-based generators may impose significant risk onto
the market. Importantly, this risk will continue to be borne by the system operator.

In this paper, we introduce a risk-based framework in which firms are penalized in proportion
with their risk exposure; in effect, firms are rendered risk-averse. We see these penalties as
contributing towards the cost of holding reserves by the ISO. In fact, these penalties are not driven
by events in the real-time market but are derived entirely on the basis of the generator bids and
the associated distributions of their generation assets in the real-time market.

In an era of growing incentives for renewables, one may naturally question the role of introduc-
ing risk-based penalties. Our research is motivated by the observation that few policy instruments
exist for addressing reliability. In fact, such concerns are exacerbated when wind-power firms
make (risky) bids that are defined by a high likelihood of shortfall in the real-time market. In
current designs, the onus of this risk is borne by the system operator while we present a frame-
work in which such firms are charged a risk premium, in accordance with a chosen risk measure.
Importantly, such premia are not uniformly imposed on all wind-based bids; specifically, if bids
that do not introduce undue risk, then little or no penalty is imposed. In short, we believe that
such risk measures provide an additional policy instrument that copes with aggressive bidding.

1.1 A motivating example

Consider the bidding by a wind-based generator in the day-ahead market. When firms change
their real-time generation levels from their day-ahead schedule, a deviation cost is imposed. This
cost takes on a variety of forms and is often a convex increasing function of the deviation. This
charge contributes to the cost faced by the ISO in addressing shortfalls that may emerge in the
real-time.2 Figure 1 shows the deviation costs arising from low and high bids in the day-ahead
market. If the actual output of the generator in the real-time market is at least as much as the
day-ahead bid, then no penalty is imposed.
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Figure 1. Deviation costs associated with low and high day-ahead bids.
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Figure 2. Risk exposure and risk-based penalties.

However, as Figure 2 shows, a high bid may impose a significant risk and the ISO has to buy
reserves to ensure that grid reliability is maintained. If in the real-time, the generator is dispatched
at the day-ahead level, then the ISO is not remunerated for this risk exposure. An alternative lies
in imposing a penalty on the generators based on this exposure, as seen in Figure 2. In fact, this
penalty may be computed in an ex ante fashion allowing the system operator to determine the risk
exposure ahead of clearing the real-time market.

1.2 Outline and contributions

Crucial to answering such questions is the development of a new generation of game-theoretic
models that can contend with the uncertainty and risk, in the context of sequential electricity mar-
kets. In the past, deterministic variants have proved to be useful in analysing a range of questions
in the design and operation of markets, both in a single-settlement framework [4,29,30,45] and in
a two-settlement framework [9,31,32,63].3 Yet, past work provides little from the standpoint of
characterizing and computing equilibria, particularly in settings complicated by risk and uncer-
tainty. The current paper is fuelled by natural questions arising from the resulting two-period
risk-averse stochastic Nash games: (a) Characterization of equilibria: Can one characterize equi-
libria in such games; and (b) Scalable computational schemes: can such equilibria be computed
via efficient scalable and convergent schemes?

This range of questions falls at the interstices of stochastic programming and continuous-
strategy Nash games. Of these, the former is a subclass of mathematical programming first
discussed by Dantzig [15] and Beale [5] and allows for both adaptive [7,33,54,60] (such as mod-
els allowing for recourse actions in the second-period, contingent on first-period decisions) and
anticipative models [7,11,55] (such as chance-constrained models that impose a probabilistic or
reliability constraint on the underlying optimization model), amongst others. Game theory [22,49]
has its roots in the work by Von Neumann and Morgenstern [47] while the Nash-equilibrium
solution concept was forwarded by Nash in 1950 [46].

Our focus is on N-person risk-averse stochastic Nash games over continuous strategy sets and
is inspired by settings where agents make simultaneous bids in the first (such as a forward market)
period followed by recourse bids in the second (such as a real-time market) period. We use a con-
ditional value-at-risk (CVaR) measure [51] to capture the risk associated with bidding with assets
whose availability is uncertain in the real-time market. The class of games under consideration
depart from canonical models in at least two ways: first, the strategy sets of the players are cou-
pled, implying that the agents are competing in a generalized Nash game [17,25]; second, each
player solves a two-period recourse-based risk-averse optimization problem. Several challenges
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4 A. Kannan et al.

are encountered in addressing the characterization and computational questions fuelling this paper.
When considering the characterization of equilibria, in the realm of continuous strategy games, a
common avenue relies on the analysis of the sufficient equilibrium conditions, namely a variational
inequality or a complementarity problem, arising from the game. Unfortunately, in the current
setting, this approach is fraught with several difficulties. First, the strategy sets across agents are
coupled when one works within a regime of a networked electricity market, implying that the
equilibrium conditions lead to a quasi-variational inequality [10,50], generally a less tractable
object. Second, given that risk-averse agents employ CVaR measures, the resulting objectives are
possibly non-smooth and the resulting variational inequality has a multivalued mapping. Third, in
general, neither are the mappings of the resulting variational inequalities strongly monotone nor
are the strategy sets compact. In short, a direct conclusion regarding existence and uniqueness of
equilibria is unavailable.

When considering the development of scalable computational schemes, the solution of the
resulting complementarity problems in practical settings is constrained by several issues. While
a direct application of a solver such as path [21] or knitro [8] is often the best choice for
solving such problems, it is unlikely that the computational effort will scale well with growth in
problem size. Consequently, the solution of truly large-scale instances via direct schemes becomes
increasingly difficult and suggests the construction of distributed schemes. Motivated by these
challenges, the present work makes the following contributions.

1.2.1 Analysis of equilibria

When agents are faced by a forward market and a subsequent uncertain real-time market, we
employ a two-period stochastic Nash model. Since, the strategy sets are coupled across firms,
a generalized variant of the Nash solution concept is employed. In general, the presence of a
CVaR measure implies that the agent objectives are non-smooth. By a suitable reformulation, an
equilibrium to the game is given by a single-valued variational inequality [20]. We show that even
in the absence of a standard risk-neutrality assumption, the resulting variational inequalities are
monotone and admit compact non-empty solution sets.

1.2.2 Convergent scalable schemes with error bounds

We present two distributed projection-based cutting-plane schemes for computing equilibria, the
first a single timescale (primal–dual) method while the second is a two timescale (dual) scheme.
For the dual scheme, we develop estimates of the convergence rate and extend the analysis
to contend with practical implementations. In particular, we analyse the error associated with
bounded complexity implementations where the underlying primal scheme is run for a finite
number of steps. The ability of the scheme to contend with the size arising from the uncertainty
rests on being able to solve the projection problems effectively. By observing that these problems
are two-period stochastic convex programs with complete recourse, we employ a cutting-plane
method whose effort grows linearly with the cardinality of the sample space. Numerical results
suggest that the overall scheme scales well with problem size.

1.2.3 Insights for market design and operation

A numerical implementation on a 53-node model of the Belgian network provides numerous
insights for market design. For instance, we observe that higher levels of risk-aversion lead to
lower participation in forward markets by firms with wind generation assets while higher levels
of wind penetration results in greater participation in forward markets.
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Optimization Methods & Software 5

The paper is organized into five sections. In Section 2, we introduce the stochastic
two-settlement electricity market model and define the related shared-constraint games and asso-
ciated variational conditions. In Section 3, we analyse the properties of equilibria arising in such
games. A novel hybrid distributed scheme that combines projection methods with cutting-plane
algorithms is presented in Section 4. In Section 5, we obtain insights through a two-settlement
networked electricity market model via a risk-based generalized Nash game. The paper concludes
with some brief remarks in Section 6.

2. A two-settlement electricity market model

While extant research has laid the foundation for drawing insights pertaining to agent behaviour in
power markets [29,30,34,63], these models and the consequent solution concepts are inadequate
at least from two standpoints: (1) First, the majority of the past effort has presented a largely
deterministic viewpoint, barring [57,63], and has ignored the native uncertainty in real-time mar-
kets arising in generation costs and availability; (2) Second, much of the past research on bidding
in two-period markets assumes fully rational agents and leads to highly intractable problems, in
general. For instance, in [63], firms participating in the forward market compete subject to equi-
librium in the spot market. This in itself is not a shortcoming, but the resulting agent problems
are given by mathematical programmes with equilibrium constraints (MPECs) [43], a class of
ill-posed non-convex nonlinear programs. Little existence theory exists for the resulting games,
called multi-leader multi-follower games [41], barring results in either conjectured settings [57]
or under rather strong assumptions [2,59]. Further, even when equilibria are known to exist, there
are no known convergent algorithms for computing these equilibria. Both shortcomings become
even more pronounced when one considers the introduction of risk measures.

The present work is principally motivated by analysing a class of game-theoretic models that can
overcome some of the shortcomings described in (1) and (2). We address (1) through a stochastic
game-theoretic framework in which agents have heterogeneous risk preferences and employ a
conditional VaR metric to capture the risk of capacity shortfall. This can be viewed as an adapted
open-loop game, first studied in an optimization setting by Haurie and Moresino [26] and Haurie
and Zaccour [27] for modelling multistage decision-making problems.This avenue alleviates some
of the challenges articulated in (2), namely from the standpoint of characterizing and computing
equilibria. In particular, we consider a simpler question of agents making simultaneous bids in the
forward market and the recourse-based bids in the spot-market. Two interpretations of the resulting
game can be given: (i) Economics: it can be viewed as a bounded-rationality simplification of the
fully rational game in which firms compete in Nash with respect to the ISO, rather than assuming a
leadership role, a model studied by Hobbs [29], amongst others; (ii) Mathematical programming:
it can also be viewed as a Nash game played at the forward market by agents solving two-period
stochastic programs. In particular, agents play a game in the first period and for every scenario in
the second period, where recourse decisions may be taken.

Using the model suggested by Yao et al. [63] as a basis, we now describe some features of our
framework that are common to the models we introduce in the sections to follow. The notation
of the model is summarized in Table A1. Suppose the uncertainty in the second-stage is captured
by the random vector ξ , and ξ : � −→ R

n̄ is defined on a probability space (�, F , P) where
� is finite in cardinality. Throughout this paper, we qualify an uncertain parameter or decision
by using a subscript ω. Consider a market in which g firms compete in an electricity network
where inflow/outflow decisions are managed by the ISO. Let N and Nj, respectively, denote
the set of nodes in this network and the set at which firm j owns generation facilities where
j = 1, . . . , g. Two-settlement markets are constructed around a sequence of clearings, in which
the first settlement specifies the forward price while the second is a consequence of physical
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6 A. Kannan et al.

transactions and determines the real-time price. We denote by xij the forward position at node i
corresponding to firm j while the corresponding physical generation in scenario ω is denoted by
yω

ij . Further, the forward and real-time prices (in scenario ω) at node i are denoted by p0
i and pω

i ,
respectively. The ISO manages injections and outflows at all nodes, where the inflow at the ith
node under scenario ω is denoted by rω

i where i ∈ N . Note that a positive (negative) value of rω
i

marks an inflow (outflow).

2.1 Pricing and risk mechanisms

Given positive scalars (aω
i , bω

i ), we define the nodal spot prices at scenario ω as an affine function
of nodal consumption at that node, given by the total generation by all firms at node i modified
by the ISO’s injection, denoted by rω

i .

pω
i (ȳω

i , rω
i ) � aω

i − bω
i (ȳω

i + rω
i ) ∀i ∈ N , (1)

where ȳω
i =∑j∈J yω

ij . Traditional models have imposed an arbitrage-free assumption that required
that the nodal forward prices were given by nodal expected spot prices. In practice, forward prices
are a consequence of a market clearing and need not necessarily match expected spot prices, as
discussed by Kamat and Oren [34]. Alternate models of forward pricing [34] point to the non-
storability of electricity as being one reason for why the no-arbitrage condition may not hold. In
accordance with Kamat and Oren [34], in one of our models, we employ a Cournot-based price
function in the forward market. Specifically, p0

i the forward price at node i is given by

p0
i (x̄i) � a0

i − b0
i (x̄i), (2)

where x̄i =∑j∈Ji
xij and a0

i and b0
i are positive scalars for all i ∈ N . Furthermore, during scenario

ω, we denote the cost of generation of firm j at node i by ζω
ij (y

ω
ij ) and the positive and negative

deviations from the forward position xij by uω
ij and vω

ij respectively. The generation in the real-time
market by firm j at node i is denoted by yω

ij and is defined by

yω
ij = xij + uω

ij − vω
ij .

Shortfall in real-time generation capacity is penalized through a deviation cost, implying that the
total cost of negative deviation arising for capacity shortfalls provides an estimate of the reliability
of the market. While grid reliability generally has a more expansive definition, the ‘likelihood of
generation shortfall in the real-time market’ is taken as a proxy for market reliability. For instance,
if generators make low forward bids, then the likelihood of real-time shortfall is correspondingly
lower. Unfortunately, such a measure of reliability is available upon the settlement of the real-time
market and is, in effect, an ex post measure. In this subsection, we present a modified model that
replaces deviation costs with a risk measure that incorporates the losses associated with a shortfall
in real-time generation. Such a modification has several benefits. First, it allows firms to compete
with heterogeneous risk preferences where the risk corresponds to the losses associated with
capacity shortfall in the real-time market. Second, the risk measure provides an ex ante measure
of market reliability.

Current market models discourage deviations from forward positions through the imposition
of convex costs on deviations. As a consequence, the firms minimize their expected revenue less
their expected cost of generation and deviation. For instance, if X(ω; y) represents the random loss
under realization ω, given forward decision y, then an expected-value approach would consider the
metric miny∈Y E[X(ω; y)]. However, such a model focuses on the average and does not consider
the possibility that levels of real-time capacity may result in massive deviation costs. In effect,
the expected-value approach does not allow for capturing risk-averseness.
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Optimization Methods & Software 7

Classical approaches to modelling risk preferences require the use of expected utility theory
leading to agents maximizing their expected utility. In particular, if u : R → R is a concave
utility function, then a risk-averse firm would maximize E[u(X(ω; y))]. Unfortunately, eliciting
the utility functions of the agents remains rather challenging and often arbitrarily selected utility
functions lead to solutions that are difficult to interpret. More recently, an approach for addressing
risk aversion is through the use of risk measures. Recently, the VaR measure has gained popularity
in the financial industry and is defined as

VaRα(X; y) � H−1
X (1 − β),

where HX(x; y) � P(X(ω; y) ≤ x). Unfortunately, the VaR measure does not satisfy the properties
of coherence [3] or convexity. Finally, the VaR measure ignores losses beyond the VaRβ(X) level
and consequently these can be arbitrarily large. The conditional value-at-risk or CVaR measure
is coherent, convex and does consider the expectation of the losses beyond the VaR level and is
defined as

CVaRτ (X(ω; y)) � min
m∈R

(
m + 1

1 − τ
E(X(ω; y) − m)+

)
, (3)

where w+ � max(w, 0) and τ ∈ (0, 1) denotes the confidence level [51]. In the past, CVaR mea-
sures, and more generally coherent risk measures, have been employed in the context of risk
management in a power setting [14] as well as an inventory control context [1]. An analogous
measure for capturing the risk of a shortfall faced by firm j’s bid at node j as follows:

CVaRτj (	(capω
ij ; xij)) � min

mij

(
mij + 1

1 − τj
E(	ij(capω

ij ; xij) − mij)
+
)

,

where 	(capω
ij , xij) denotes the loss function given a bid xij, capω

ij denotes the capacity of firm i’s
plant at node j in the second period, and τj refers to the confidence level imposed by firm j. An
instance of such a loss function is given by

	(capω
ij , xij) = χ(xij − capω

ij )
+,

where χ > 0. Such a loss function is positive if the bid exceeds the random availability. As a
consequence, when xij is set closer to the right tail of the distribution capω

ij , then this loss function
is positive with a high probability; correspondingly, if xij is low, then this loss function is zero
with a high probability.

For purposes of constructing a compact notation, the strategy of the jth firm is denoted by zj

and is defined as

zj �

⎛
⎜⎜⎜⎜⎜⎜⎝

x•j

m•j

y••j

u••j

v••j

⎞
⎟⎟⎟⎟⎟⎟⎠ , w•j �

⎛
⎜⎝

w1j
...

wNj

⎞
⎟⎠ and w•

•j �

⎛
⎜⎝

w1•j
...

w|�|
•j

⎞
⎟⎠ .

For j = 1, . . . , g, the resulting profit functions of firm j are given by the summation of nodal
expected profits less risk of shortfall:

πj(zj; z−j) �
∑
i∈N

p0
i xij + E(pω

i (yω
ij − xij) − ζω

ij (y
ω
ij ))︸ ︷︷ ︸

Mean profit

−κj

∑
i∈N

CVaRτj (	(capω
ij ; xij))︸ ︷︷ ︸

Shortfall risk

, (4)
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8 A. Kannan et al.

where κj represents the risk-aversion parameter of agent j. If Ji denotes the set of firms that have
generation resources at node i, then the jth firm’s strategy set is given by Zj ∩ Dj(z−j) where

Zj �

⎧⎨
⎩zj :

⎧⎨
⎩

yω
ij = xij + uω

ij − vω
ij

yω
ij ≤ capω

ij

xij, uω
ij , vω

ij , yω
ij ≥ 0,

⎫⎬
⎭ ∀i ∈ N , ∀ω ∈ �

⎫⎬
⎭

and

Dj(z−j) �

⎧⎨
⎩zj :

⎧⎨
⎩∑

j∈Ji

yω
ij + rω

i ≥ 0

⎫⎬
⎭ , ∀i ∈ N , ∀ω ∈ �

⎫⎬
⎭ ,

respectively.
In the definition of Zj, the first set of constraints relate real-time generation to the forward

positions through the deviation levels while the second set of constraints impose a bound on
real-time generation based on available capacity. The set-valued mapping Dj(z−j) is defined by a
set of algebraic constraints which specify that the net outflow at every node is non-negative.

Next, we define zg+1 which is subsequently employed in constructing the ISO’s problem:

zg+1 � r•
• , r•

• �

⎛
⎜⎝

r•
1
...

r•
N

⎞
⎟⎠ , r•

i �

⎛
⎜⎝

r1
i
...

r|�|
i

⎞
⎟⎠ .

If N̄ represents the set of nodes in the network less the slack node, then the ISO’s strategy set is
given by Zg+1 ∩ Dg+1(z−(g+1)) where

Zg+1 �

⎧⎪⎪⎨
⎪⎪⎩zg+1 :

⎧⎪⎪⎨
⎪⎪⎩

∑
i∈N

rω
i = 0∑

i∈N̄

Ql,ir
ω
i ≤ Kω

l ,
∑
i∈N̄

Ql,ir
ω
i ≥ −Kω

l ,

⎫⎪⎪⎬
⎪⎪⎭ ∀l ∈ L, ∀ω ∈ �

⎫⎪⎪⎬
⎪⎪⎭

and

Dg+1(z−(g+1)) �

⎧⎨
⎩rω

i :

⎧⎨
⎩∑

j∈Ji

yω
ij + rω

i ≥ 0

⎫⎬
⎭ , ∀i ∈ N , ∀ω ∈ �

⎫⎬
⎭ ,

respectively.
Note that in Zg+1, the first set of constraints are the power balance requirements, while the

second and third represent the transmission capacity constraints4. The ISO’s objective, taken
as the social welfare [34,62], is given by the expected spot-market revenue (the area under the
price-quantity curve) less generation cost or

πg+1(zg+1; z−(g+1)) �
∑
i∈N

E

⎛
⎝∫ ∑

j∈J yω
ij +rω

i

0
p(τ ) dτ −

∑
j∈J

ζω
ij (y

ω
ij )

⎞
⎠ .

Note that since the ISO does not directly control real-time generation (denoted by y), the second
term may be dropped from the objective.

It is worth remarking how the recourse model relates to the functioning of the real-time market.
Standard designs necessitate that every firm provides a single bid in the real-time market, prior
to the realization of the uncertainty. The recourse-based approach requires that the probability
space is known to all firms and the ISO and every firm provides a set of ‘recourse’ bids, each of
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Optimization Methods & Software 9

which corresponds to one realization of uncertainty; In effect, each firm would submit |�| real-
time bids. Furthermore, the ISO has no forward decision but does provide a set of recourse-based
injections/withdrawals at a nodal level.

2.2 Generalized Nash games and variational equilibria

The resulting parameterized optimization problem faced by the jth firm is given by and the
associated generalized Nash game is given by the following.

Definition 2.1 Consider a generalized Nash game in which the jth firm solves

Ag(z−(j))maximize πj(zj; z−j)

subject to zj ∈ Zj ∩ Dj(z−j),

where j = 1, . . . , g + 1. Then, the associated generalized Nash equilibrium is given by a tuple
{z∗

j }g+1
j=1 where z∗

j solves the problem Ag(z∗−j) for all j ∈ A or z∗
j ∈ SOL(Ag(z∗−j)) for j = 1, . . . , g +

1.

The classical Nash solution concept does not allow for an interaction in the strategy sets. Yet
in our setting, we observe that the strategy sets are indeed coupled, leading to a generalized Nash
game. In general, under suitable convexity and differentiability assumptions, the resulting equi-
librium conditions of the shared-constraint Nash game are given by a quasi-variational inequality,
an extension of the variational inequality [24,53]. Recent work by Facchinei et al. [20] has shown
that if the strategy sets are coupled through a shared constraint, an equilibrium of the game is
given by the solution of an appropriately defined scalar variational inequality. This holds in our
setting where the firms and the ISO are coupled through∑

j∈Ji

yω
ij + rω

i ≥ 0 ∀i ∈ N ∀ω ∈ �.

The analysis of generalized Nash equilibrium problems with a set of convex shared constraints
has been studied recently in [17,19,20]. Consider a mapping F and a set Z given by5

F(z) � (−∇zjπj(z))
g+1
j=1 , Z �

⎛
⎝g+1∏

j=1

Zj

⎞
⎠ ∩ D, (5)

where

D �

⎧⎨
⎩z :

∑
j∈Ji

yω
ij + rω

i ≥ 0, ∀i ∈ N , ∀ω ∈ �

⎫⎬
⎭ .

Note that z ∈ R
M , Z ⊆ R

M and F : R
M −→ R

M . Then the key result in [20] proves that the
solvability of VI(Z, F) suffices for ensuring that the original shared-constraint game admits an
equilibrium.6 Recall that VI(Z, F) is defined as the problem of finding a vector z∗ ∈ Z such that

F(z∗)T(z − z∗) ≥ 0, ∀z ∈ Z.

The equilibrium corresponding to a solution of this variational problem is referred to as the
normalized equilibrium [53] or the variational equilibrium (VE) [20] and its relationship to the
shared-constraint game is given by the following.
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10 A. Kannan et al.

Theorem 2.2 Suppose the objective function πj(zj; z−j) is concave and differentiable in zj for all
z−j for all j ∈ A and D, Z1, . . . , Zg+1 are closed and convex sets. Then every solution to VI(Z, F)

is a solution to the shared-constraint game given by Definition 2.1.

A similar result is available when πj can only be shown to be continuous and concave for
all j ∈ A; specifically every solution to an appropriately defined variational inequality with a
multivalued mapping is a solution to the game [19].

3. Existence and uniqueness of equilibria

The analysis of the VE rests on the properties of the variational inequality, denoted by VI(Z, F).
When Z is closed and convex and F is continuous, compactness of Z suffices for existence [18].
Similarly, uniqueness follows if F is strongly monotone over Z, which requires that there exists
a ν > 0 such that

(F(x) − F(y))T(x − y) ≥ ν‖x − y‖2 ∀x, y ∈ Z.

Unfortunately, in the current setting, neither compactness of Z nor strong monotonicity of F holds.
These complications motivate a deeper analysis of VI(Z, F) and represent the core of this section.
Note that the analysis of variational inequalities enjoys a long history and an expansive discussion
of these topics may be found in [18, Chapter 2,3]. We make the following assumptions on costs
and prices and invoke them when necessary.

Assumption 3.1 (A1) The cost of generation ζω
ij is a convex twice-continuously differentiable

function of yω
ij for all i ∈ N , j ∈ J and for all ω ∈ �.

(A2) The nodal spot-market price is defined by the affine price function (1) for all i ∈ N and for
all ω ∈ �.

Invoking the definition of the conditionalVaR, we can reformulate the non-smooth firm problem
as a smooth convex program by the addition of a set of convex constraints, each corresponding
to one realization of uncertainty. Effectively, agent j’s parameterized problem is given by

Ag(z−j)maximize
∑
i∈G

(
πij(xij) +

∑
ω∈�

ρωπω
ij (y

ω
ij ; rω

i ) − κj

(
mij +

∑
ω∈�

ρω
sω

ij

1 − τj

))

subject to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yω
ij = xij + uω

ij − vω
ij

yω
ij ≤ capω

ij

sω
ij ≥ 	ij(xij, capω

ij ) − mij∑
j∈Ji

yω
ij + rω

i ≥ 0

xij, uω
ij , vω

ij , yω
ij , sω

ij ≥ 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, ∀i ∈ N ∀ω ∈ �.

Based on the redefinition of the agent problems, in this subsection, the mapping F is appropriately
redefined to include the gradients of sω

ij and mij. Similarly, Zj is extended to account for sω
ij and mij.

The characterization of equilibria to the game (Definition 2.1) requires the following assumption
on the loss function as well as a relationship between the slopes of the real-time and forward-market
price functions.
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Optimization Methods & Software 11

Assumption 3.2 (A3) The loss function 	ij(xij, capω
ij ) is convex and increasing in xij and Ebω

i ≤
4b0

i for all i ∈ N .

The above assumption ensures the convexity of the problem and allows for showing that the
game admits an equilibrium. We begin by proving an intermediate result that shows that the
objective function is convex under a mild assumption on the slopes of the price functions.

Lemma 3.3 Suppose (A1)–(A3) hold. Then the objective functions of the firms and the ISO are
concave.

Proof It suffices to prove the convexity of the expectation term of every agent’s objective (w.r.t
minimization), given by ηij(xij, yij; yi,−j), defined as

ηij(xij, yij; xi,−j, yi,−j) = −
⎛
⎝a0

i − b0
i

∑
j∈J

xij

⎞
⎠ xij

−
∑
ω∈�

ρω

⎛
⎝aω

i − bω
i

⎛
⎝∑

j∈J
yω

ij + rω
i

⎞
⎠
⎞
⎠ (yω

ij − xij).

The gradient and Hessian of this function are given by

∇ηij =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b0
i xij + b0

i

∑
j∈J

xij − a0
i +
∑
ω∈�

ρωaω
i −

∑
ω∈�

ρωbω
i

⎛
⎝∑

j∈J
yω

ij + rω
i

⎞
⎠

ρω

⎛
⎝−a1

i + b1
i

⎛
⎝y1

ij +
∑
j∈J

y1
ij

⎞
⎠+ b1

i r1
i − b1

i xij

⎞
⎠

...

ρn

⎛
⎝−an

i + bn
i

⎛
⎝yn

ij +
∑
j∈J

yn
ij

⎞
⎠+ bn

i rn
i − bn

i xij

⎞
⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

∇2ηij =

⎛
⎜⎜⎜⎝

2b0
i −ρ1b1

i . . . −ρnbn
i−ρ1b1

i 2ρ1b1
i . . . 0

...
...

. . .
...

−ρnbn
i 0 . . . 2ρnbn

i

⎞
⎟⎟⎟⎠ ,

respectively. Let s be an arbitrary non-zero vector. Then by adding and subtracting terms, we have

sT∇2ηijs = 2b0
i s2

1 − 2s1

n∑
ω=1

ρωbω
i sω+1 + 2

n∑
ω=1

ρωbω
i s2

ω+1

=
(

2b0
i −

n∑
ω=1

ρω bω
i

2

)
s2

1 +
n∑

ω=1

ρω bω
i

2
s2

1 − 2s1

n∑
ω=1

ρωbω
i sω+1 + 2

n∑
ω=1

ρωbω
i s2

ω+1

=
(

2b0
i −

n∑
ω=1

ρω bω
i

2

)
s2

1 +
n∑

ω=1

ρωbω
i

(
s1√

2
− √

2sω+1

)2

.
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12 A. Kannan et al.

By assumption E(bω
i ) ≤ 4b0

i implying that sT∇2ηijs > 0 for all non-zero s and ηij(xij, yij; yi,−j) is
a strictly convex function in xij and yij for all xi,−j and yi,−j. The convexity of πj in zj follows from
recalling that the generation costs and the CVaR measure are known to be convex. �

Having proved the convexity of the objectives, the variational inequality specifying the VE is
necessary and sufficient. To claim the existence of a VE, we employ the following sufficiency
condition [18]:

Theorem 3.4 Let Z be closed and convex and F be a continuous mapping. If there exists a vector
zref ∈ Z such that

lim inf
z∈Z,‖z‖−→∞

F(z)T(z − zref) > 0,

then the VI(Z, F) has a non-empty compact solution set.

Our main existence result proves that the variational problem associated with the game does
indeed satisfy these conditions.

Proposition 3.5 (Existence of a Nash equilibrium) Consider the stochastic Nash game speci-
fied by Definition 2.1 and let assumptions (A1)–(A3) hold. Then the game admits a non-empty
compact set of equilibria.

Proof Based on Theorem 2.2, it suffices to prove the existence of a solution to VI(Z, F). By
Theorem 3.4, this variational inequality is solvable if there exists a zref ∈ Z such that the expression
in Theorem 3.4 holds. If we set (sω

ij )
ref � 	ij(0, capω

ij ), and xref , yref , rref , mref � 0, then zref ∈ Z. It
suffices to show that the coercivity result holds with u and v dropped from the formulation (since
there exist no deviation penalties). By our choice of zref , the term F(z)T(z) can be written as

F(z)T(z) =
∑
ω∈�

∑
i∈N

ρω

⎛
⎝−aω

i + bω
i

⎛
⎝∑

j∈J
yω

ij + rω
i

⎞
⎠
⎞
⎠ rω

i

︸ ︷︷ ︸
(Fr(z))T(r)

+
∑
j∈J

κj

∑
i∈Nj

∑
ω∈�

ρω

(
sω

ij − (sω
ij )

ref

1 − τ
+ mij

)
︸ ︷︷ ︸

(Fsj (z))
T(sj)+(Fmj (z))

T(mj)

+
∑
j∈J

∑
ω∈�

∑
i∈Nj

ρω

⎛
⎝−aω

i + ∂ζij
ω

∂yω
ij

+ bω
i yω

ij + bω
i

⎛
⎝∑

j∈J
yω

ij + rω
i

⎞
⎠− bω

i xij

⎞
⎠ yω

ij

︸ ︷︷ ︸
Fyj (z)

T(yj)

+
∑
j∈J

∑
i∈Nj

⎛
⎝b0

i xij + b0
i

∑
j∈J

xij − a0
i +
∑
ω∈�

ρωaω
i −

∑
ω∈�

ρωbω
i

⎛
⎝∑

j∈J
yω

ij + rω
i

⎞
⎠
⎞
⎠ xij

︸ ︷︷ ︸
Fxj (z)

T(xj)

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
Il

lin
oi

s 
at

 U
rb

an
a-

C
ha

m
pa

ig
n]

 a
t 0

8:
32

 2
1 

M
ay

 2
01

2 



Optimization Methods & Software 13

=
∑
j∈J

∑
ω∈�

∑
i∈Nj

ρω

⎛
⎝−aω

i + ∂ζij
ω

∂yω
ij

+ bω
i yω

ij + bω
i

⎛
⎝∑

j∈J
yω

ij + rω
i

⎞
⎠
⎞
⎠ yω

ij

︸ ︷︷ ︸
term 1

+
∑
j∈J

∑
i∈Nj

⎛
⎝b0

i xij + b0
i

∑
j∈J

xij − a0
i +
∑
ω∈�

ρωaω
i −

∑
ω∈�

ρωbω
i

⎛
⎝∑

j∈J
2yω

ij + rω
i

⎞
⎠
⎞
⎠ xij

︸ ︷︷ ︸
term 2

+
∑
ω∈�

∑
i∈N

ρω

⎛
⎝−aω

i + bω
i

⎛
⎝∑

j∈J
yω

ij + rω
i

⎞
⎠
⎞
⎠ rω

i

︸ ︷︷ ︸
term 3

+
∑
j∈J

κj

∑
i∈Nj

∑
ω∈�

ρω

(
sω

ij − (sω
ij )

ref

1 − τ
+ mij

)
︸ ︷︷ ︸

term 4

. (6)

From the boundedness of y, the definition of the shared constraints and from
∑

i∈N rω
i = 0, ∀ω ∈

�, the boundedness of r follows. Therefore, we may conclude that term 1 is bounded and for any
sequence {zk}, such that ‖zk‖ → ∞, it follows that one of the sequences {‖xk‖}, {‖sk‖} and {|mk|}
is tending to +∞.

Case 1: Suppose the forward generation bid xk tends to infinity implying that term 2 tends to
+∞ at a quadratic rate.

Case 2: Suppose either (or both) sk or |mk| tend to +∞. sk ∈ Z, mk ∈ Z, sk ≥ 0 and sk + mk is
bounded from below. If, mk tends to −∞, then sk tends to +∞. Hence, term 4 grows to +∞. If
mk or sk tend to +∞, then term 4 tends to +∞. 7

Case 3: Suppose xk tends to +∞ and any combination of sk , and |mk| tends to +∞. If mk alone
tends to −∞, then term 4 tends to −∞ and term 2 tends to +∞ at a quadratic rate. Consequently,
the entire sum tends to +∞. If sk tends to +∞, mk reduces to −∞ and xk tends to +∞ then
Cases 1 and 3 can be used in conjunction. The other possibilities lead to immediate results of the
sequence tending to +∞.

Consider any sequence {zk} ∈ Z such that limk→∞ ‖zk‖ = ∞. Since none of the terms tend to
−∞ and at least one of the terms tend to ∞, it follows that

lim inf
z∈Z,‖z‖−→∞

F(z)T(z) = ∞.

This completes the proof. �

A uniqueness result rests on being able to show that the mapping is strictly monotone. However,
in the current setting, the mapping arising from the risk-based game can only be shown to be
monotone, as the next result shows. This requires showing ∇F, given by

∇F(z) =

⎛
⎜⎜⎜⎜⎝

∇1F1 0 . . . 0

0 ∇2F2
. . .

...
...

. . .
. . . 0

0 . . . 0 ∇N FN

⎞
⎟⎟⎟⎟⎠ ,

is positive semidefinite for all z, where ∇iFi represents the gradient mapping (in the order
xi, yi, ri, si, mi, ui and vi) with respect to the nodal variables corresponding to node i. If e and
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14 A. Kannan et al.

I denote the column of ones and the identity matrix, respectively, then the matrix ∇Fi, ∀i ∈ G is
given by

∇Fi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

P0
i P1

i . . . Pn
i Hi 0

R1
i S1

i . . . 0 F1
i 0

...
...

. . .
...

...
...

Rn
i 0 . . . Sn

i Fn
i 0

0 T 1
i . . . T n

i Ki 0
0 0 . . . . . . 0 Vi

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where Pω
i = −ρωbω

i e eT, Rω
i = −ρωI , Sω

i = ρωbω
i (I + e eT) + diag(dω

i1 . . . dω
ig)∀ω ∈ �, P0

i =
b0

i (I + e eT), Hi = e(ρ1b1
i . . . ρnbn

i ), Ki = diag(ρ1b1
i . . . ρnbn

i ) and Vi = 0. Furthermore,
F1

i , . . . , Fn
i and T 1

i , . . . , T n
i are defined as

F1
i =

⎛
⎜⎝

ρ1b1
i . . . 0

...
. . .

...
ρ1b1

i . . . 0

⎞
⎟⎠ , . . . , Fn

i =
⎛
⎜⎝

0 . . . ρnbn
i

...
. . .

...
0 . . . ρnbn

i

⎞
⎟⎠ ,

T 1
i =

⎛
⎜⎝

ρ1b1
i . . . ρ1b1

i
...

. . .
...

0 . . . 0

⎞
⎟⎠ , . . . , T n

i =
⎛
⎜⎝

0 . . . 0
...

. . .
...

ρnbn
i . . . ρnbn

i

⎞
⎟⎠ .

Note that Vi refers to the zero matrix representing the second-order derivatives with respect to
s, m, u and v. Next, we show that the game in question admits a unique ε-Nash equilibrium, given
by a solution to VI(K , Fε) where Fε = F + εI and I is the identity mapping.

Proposition 3.6 (Uniqueness of regularized variational equilibrium) Consider the stochastic
Nash game given by Definition 2.1 and let (A1)–(A3) hold. Then the resulting mapping F(z)
is monotone over Z and the stochastic Nash game admits a unique ε-Nash equilibrium.

Proof Since, the matrix Vi is a zero matrix, it suffices to show that principal submatrix of ∇Fi,
without the last row and column corresponding to Vi, is positive semidefinite. If F̂ represents this
mapping in the reduced space, it suffices to show that for all s �= 0 we have sT∇F̂is > 0 where
sT∇F̂is is given by

sT∇F̂is = b0
i

g∑
k=1

s2
k + b0

i

(
g∑

k=1

sk

)2

−
n∑

ω=1

ρωbω
i

g∑
k=1

sksωg+k

−
n∑

ω=1

ρωbω
i

g∑
k=1

sk

g∑
k=1

sωg+k +
n∑

ω=1

ρωbω
i

⎛
⎝ g∑

k=1

s2
ωg+k +

(
g∑

k=1

sωg+k

)2
⎞
⎠

+
n∑

ω=1

ρω

(
g∑

k=1

dω
iks2

ωg+k

)

+
n∑

ω=1

ρωbω
i

(
s(n+1)g+ω

g∑
k=1

sωg+k

)
−

n∑
ω=1

ρωbω
i

(
s(n+1)g+ω

g∑
k=1

sk

)

+
n∑

ω=1

ρωbω
i

(
s(n+1)g+ω

g∑
k=1

sωg+k

)
+

n∑
ω=1

ρωbω
i

(
s(n+1)g+ω

)2
.
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Optimization Methods & Software 15

Adding and subtracting terms, the right-hand side is given by

sT∇F̂is =
(

b0
i −

n∑
ω=1

ρωbω
i

4

)
g∑

k=1

s2
k +
(

b0
i −

n∑
ω=1

ρωbω
i

4

)(
g∑

k=1

sk

)2

−
n∑

ω=1

ρωbω
i

g∑
k=1

sksωg+k

+
n∑

ω=1

ρωbω
i

4

g∑
k=1

s2
k +

n∑
ω=1

ρωbω
i

4

(
g∑

k=1

sk

)2

−
n∑

ω=1

ρωbω
i

g∑
k=1

sk

g∑
k=1

sωg+k

+
n∑

ω=1

ρωbω
i

⎛
⎝ g∑

k=1

s2
ωg+k +

(
g∑

k=1

sωg+k

)2
⎞
⎠+

n∑
ω=1

ρω(

g∑
k=1

dω
iks2

ωg+k)

+ 2
n∑

ω=1

ρωbω
i

(
s(n+1)g+ω

g∑
k=1

sωg+k

)
−

n∑
ω=1

ρωbω
i

(
s(n+1)g+ω

g∑
k=1

sk

)

+
n∑

ω=1

ρωbω
i

(
s(n+1)g+ω

)2
.

On rearranging, sT∇F̂is is given by

(
b0

i −
n∑

ω=1

ρωbω
i

4

)
g∑

k=1

s2
k +
(

b0
i −

n∑
ω=1

ρωbω
i

4

)(
g∑

k=1

sk

)2

+
n∑

ω=1

(
ρωbω

i

g∑
k=1

( sk

2
− sωg+k

)2
)

+
n∑

ω=1

ρω

(
g∑

k=1

dω
iks2

ωg+k

)
+

n∑
ω=1

ρωbω
i

(
s(n+1)g+ω +

g∑
k=1

sωg+k −
g∑

k=1

sk

2

)2

.

Since 4b0
i ≥ Ebω

i holds by assumption, it follows that sT∇F̂is ≥ 0 for all i ∈ G implying that
∇Fi is also positive semidefinite for all i ∈ G. The gradient mapping for all i ∈ Gc is given by a
mapping with all zeros except for the block Ki that is positive semi-definite. Since the gradient
mappings corresponding to the load nodes are positive semidefinite, the positive semidefiniteness
of the entire gradient mapping ∇F follows. Consequently, F is a monotone mapping and its
regularization, namely Fε = F + εI, is a strongly monotone mapping. It follows that a unique
solution to VI(Z, Fε) exists, allowing us to conclude a unique ε-Nash equilibrium exists. �

Note that since F is a continuous monotone mapping, if a solution to VI(Z, F) is shown to be
locally unique, then global uniqueness of the Nash equilibrium follows [18, Theorem 3.6.6]. Local
uniqueness of the VE is not immediate and requires a closer examination of ∇F and remains a
focus of future work.

4. A scalable cutting-plane projection scheme

The game-theoretic problem introduced in Section 2 leads to monotone stochastic variational
problems. While much exists for solving monotone variational inequalities [18,35], unfortunately
most schemes can neither be implemented in a distributed setting (since the constraint sets are
coupled) nor do they possess the scalability required to address this class of problems since our
class of problems can be arbitrarily large in terms of the number of agents, the size of the network
and the cardinality of the sample space.
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16 A. Kannan et al.

It should be remarked that there have been relatively few attempts to examine the class of gen-
eralized Nash games while even fewer have considered their stochastic counterparts. Fukushima
and Pang [50] suggested a sequential penalization approach for solving such problems while a
review of approaches can be found in [17]. Of note is a recent approach that uses a Nikaido–Isoda
(NI) function by Von Heusinger and Kanzow [28] and a relaxation algorithm using the NI function
by Krawczyk and Uryasev [38]. In [16,61], sample-average approximation schemes are suggested
but neither the coupled nature of their strategy sets nor their semi-infinite nature can be accom-
modated. Note that it may be possible to employ their approach on the complementarity problem
that emerges from this setting. An alternate scheme that relies on matrix splitting techniques is
suggested in [57].

Accordingly, our focus is on developing convergent algorithms with suitable error bounds,
for addressing this class of problems. We place an emphasis on the construction of distributed
schemes that scale with the cardinality of the sample space, namely |�|, the number of agents |J |
and the size of the network |N |. To address these needs, we develop a distributed projection-based
method that employs a cutting-plane method for solving the agent-specific projection problems.

In Section 4.1, we describe a dual and a primal–dual projection method for the solution of
shared-constraint stochastic Nash games. At the heart of these schemes is a projection step which
in general leads to a massive stochastic convex program. In Section 4.2, we employ a cutting-plane
method for the solution of such problems that scales with |�|. Rate estimates and error bounds,
particularly for inexact generalizations, are presented for the projection schemes in Section 4.3.
Finally, in Section 4.4, while examining the numerical behavior of the schemes, we observe that
the schemes display the desired scalability properties and the inexact generalizations prove to
have significant benefits.

4.1 Distributed primal–dual and dual projection methods

We begin with an introduction to projection(or gradient)-based methods for monotone variational
inequalities. Given a variational inequality VI(Z, F) where F is a strongly monotone Lipschitz
continuous mapping over Z with monotonicity constant η and Lipschitz constant L, then given
an x0 one may construct a sequence {xk} as follows:

xk+1 := �Z(xk − γ F(xk)), k ≥ 0, (7)

where �Z(y) is the projection of y on Z. If γ < 2η/L2, then xk −→ x∗ as k −→ ∞, where
x∗ is a solution of VI(Z, F). This gradient-based framework may be extended to a multi-player
game-theoretic regime, as shown next.

Consider an N-player deterministic Nash game in which the jth agent solves the parameterized
convex optimization problem given by

A(z−j) maximize πj(zj; z−j)

subject to zj ∈ Zj,

where πj(zj; z−j) is a convex differentiable function of zj for all z−j and Zj is a closed and convex
set. Then a standard distributed projection scheme is given by

zk+1
j := �Zj (z

k
j + γ∇πj(z

k
j ; zk

−j)) for all j = 1, . . . , N ,

where γ is a fixed steplength.Yet, the convergence of such a scheme relies on two properties: First,
the gradient mapping given by F(z) needs to satisfy strict monotonicity, strong monotonicity or
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Optimization Methods & Software 17

co-coercivity property [18] over a set Z where F(z) and Z are defined as

F(z) := −(∇ziπi)
g+1
i=1 and Z �

g+1∏
j=1

Zj.

Second, the strategy sets across agents cannot be coupled. In our setting, neither assumption holds
and therefore a direct application of the aforementioned approach cannot be employed. Note that
this approach will be referred to as a primal approach, since it does not involve relaxing the shared
constraints. If one does proceed with such a relaxation, then a scheme that updates both primal
and dual variables (associated with the shared constraints) is considered.8

Instead, we observe that the shared-constraint game can be cast as a monotone complementarity
problem in the primal–dual space. By solving a sequence of regularized (and therefore strongly
monotone) complementarity problems through a Tikhonov regularization scheme [18], we obtain
a solution to the original problem. Note that the monotonicity of the mapping in the primal–dual
space suffices for the Tikhonov trajectory to converge to the solution of the original problem [18,
Chapter 12]. This avenue allows us to leverage fixed steplength projection schemes for the solution
of each regularized complementarity problem. Importantly, each subproblem can be massive, with
a size proportional to |�| × |J | × |N |, and a direct solution of such problems is only possible in
modest settings. To cope with such a challenge, we develop a distributed framework that relies
on decomposition methods that scale well with all three sources of complexity.

We now proceed to describe the distributed projection framework. If the Lagrange multipliers
corresponding to the shared constraint, denoted by d(z) ≥ 0, are denoted by λ, then it follows
that (z∗, λ∗) is an equilibrium of shared-constraint Nash game if and only if (z∗, λ∗) is a solution
of set of coupled fixed-point problems:

z = �Z(z − γ Fz(z, λ)), (8)

λ = �R
+
m
(λ − γ Fλ(z, λ)), (9)

where

Fz(z, λ) =
⎛
⎜⎝

−∇z1π1 − ∇z1 d(z)Tλ
...

−∇zN πN − ∇zN d(z)Tλ

⎞
⎟⎠ and Fλ(z, λ) = d(z). (10)

The fixed-point representations motivate a primal–dual method that requires constructing a primal
and dual method on the same timescale (primal and dual steps taken simultaneously) with a fixed
steplength γpd in a regularized setting. Specifically, this entails the following set of regularized
primal and dual steps for k ≥ 0:

zk+1
j = �Zj (z

k
j − γpd(Fz(z

k
j ; zk

−j, λ
k) + ε�zk

j )) for all j, (11)

λk+1 = �R
+
m
(λk − γpd(Fλ(z

k , λk) + ε�λk)), (12)

where ε� is the regularization parameter at the �th iteration of the outer Tikhonov scheme. In
the regularized primal–dual approach, the steplength γpd has to be chosen in accordance with
the monotonicity and Lipschitz constant of the appropriate mappings in both the primal and dual
spaces (see Section 4.3 for more details). In effect, if the mappings in one of the spaces has a
large Lipschitz constant (or alternately a low monotonicity constant), the progress of the entire
algorithm may be hampered.

A dual method for solving the monotone complementarity problem does not tie the primal and
dual steplengths together and can be employed instead. This requires that for every update in the
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18 A. Kannan et al.

dual space, an exact primal solution is required. In particular, for k ≥ 0, this leads to a set of
iterations given by

zk
j = �Zj (z

k
j − γd(Fz(z

k
j ; zk

−j, λ
k) + ε�zk

j )) for all j (13)

λk+1 = �R
+
m
(λk − γp(Fλ(z

k , λk) + ε�λk)), (14)

where γp and γd are the primal and dual steplengths, respectively. The termination of the inner
scheme occurs when the error in the fixed-point problem falls within a threshold and is ensured
by the following for the primal–dual scheme∥∥∥∥

(‖zk+1 − zk‖
1 + ‖zk‖ ,

‖λk+1 − λk‖
1 + ‖λk‖

)∥∥∥∥ ≤ εinner, (15)

and the dual scheme
‖λk+1 − λk‖

1 + ‖λk‖ ≤ εinner. (16)

The exact solution of such a problem may prove difficult, suggesting instead that we may need
to employ inexact or approximate solutions. Expectedly, this would lead to errors that require
quantification. This analysis is provided, along with suitable convergence results, in Section 4.3.
We conclude this subsection with an algorithm statement for the projection-based schemes.

Algorithm 1 Distributed primal–dual and dual projection methods
Initialize k = 0, � = 0
Choose constants ε0, εinner , εouter > 0 and γpd , γp and γd , initial solution (z0, λ0), γ̄ < 1

3: while ε� > εouter do
while conditions (15) or (16) are not satisfied do

Let λk+1 be given by (12) (Primal-dual) or (14) (Dual)
6: Let zk+1 be given by (11) (Primal-dual) or the solution of (13) (Dual)

k := k + 1
Update regularization ε�+1 := γ̄ ε�

9: � := � + 1
end while

end while

4.2 A scalable cutting-plane method for the projection problem

In the projection schemes presented in the earlier section, the solution of the primal projection
step, as denoted by (11) and (13), requires the solution of a large convex program of size O(|�|).
This is generally only possible via direct solvers for modest sample spaces and in this subsection,
we discuss how one may solve such problems in a scalable fashion for arbitrarily large sample
spaces.

In the current setting, Zj is a polyhedral set implying that the projection problem is a quadratic
program (QP) and, given that the problem originates from a projection problem, this QP is, in
fact, strongly convex. In the past, QPs have been solved by a variety of schemes, such as interior-
point methods, active-set methods and others [48]. All of these schemes are necessarily direct
approaches in that they make no obvious effort to utilize the structure of the problem. However, in
this instance, the problems belong to a class of recourse-based stochastic quadratic programs [7].
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Optimization Methods & Software 19

The key computational challenge in solving recourse-based stochastic optimization problems lies
in ensuring that scenario-specific second-stage problems are solved in parallel, effectively allowing
for a scalable method. In 1969, based on a decomposition scheme suggested by Benders [6], Van-
Slyke and Wets [60] stated a cutting-plane method for the solution of recourse-based stochastic
linear programs (LPs) that allows for precisely such a parallelization. While much has been done
on the solution of stochastic LPs (cf. [7,33]), stochastic convex programming has been less studied
in general [52]. Parallel schemes for the solution of stochastic QPs via splitting and projection
methods were discussed by Womersley and Chen [13] while extensions to the L-shaped cutting-
plane method have been suggested by Zakeri et al. [64]. More recently, Kulkarni and Shanbhag
[40] and Kulkarni et al. [39] developed an inexact-cut and a trust-region L-shaped method for
solving stochastic QPs that was subsequently employed as a QP solver within a more general
sequential quadratic programming method for solving non-convex stochastic NLPs [39,40]. We
employ a similar L-shaped scheme for solving the stochastic quadratic program arising from the
projection problem.

Computing the projection in the primal space (13) and (11), requires solving a stochastic
program given by

minimize 1
2 (x̂j − z̄k

j )
T(x̂j − z̄k

j )

subject to x̂j ∈ Zj,

where

z̄k
j = (zk

j − γ Fzj (zj; zk
−j, λ

k)), x̂j =
(

x̂j

(ŷω
j )ω∈�

)
, x̂j =

(
xj

mj

)
,

ŷω
j =

⎛
⎜⎜⎝

uω
j

vω
j

yω
j

sω
j

⎞
⎟⎟⎠ , ∀j ∈ J , x̂g+1 = (0), ŷω

g+1 =
⎛
⎜⎝

rω
1
...

rω
N

⎞
⎟⎠ .

In settings where the loss function in the risk measure is affine (or in the risk-neutral deviation
cost setting), the projection problem reduces to a stochastic quadratic program given by

minimize
1

2
x̂T

j x̂j + x̂T
j x̄j +

∑
ω∈�

(
1

2
(ŷω

j )T(ŷω
j ) − (ŷω

j )Tȳω
j

)

subject to (x̂j, ŷω
j ) ∈ Zj =

⎧⎪⎪⎨
⎪⎪⎩(x̂j, ŷω

j ) :

⎧⎪⎪⎨
⎪⎪⎩

A1x̂j + A2ŷω
j = b̂ω

j

A3ŷω
j ≤ capω

ij ,
A4x̂j ≥ 0,
ŷω ≥ 0,

⎫⎪⎪⎬
⎪⎪⎭∀ω ∈ �

⎫⎪⎪⎬
⎪⎪⎭ ,

where A1, A2, A3 and A4 are defined appropriately. As � grows in cardinality, a direct solution
of the quadratic program becomes challenging. Instead, we pursue a stochastic programming
avenue by noting that the constraint structure allows one to cast the problem as a recourse-based
stochastic program. Specifically, we have

minimize 1
2 x̂T

j x̂j + x̂T
j x̄j + Q(x̂j)

subject to A4x̂j ≥ 0,
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20 A. Kannan et al.

where Q(x̂j), the cost of recourse is given by Q(x̂j) = EQ(x̂j; ω) and Q(x̂j; ω) is the optimal value
of the scenario-specific quadratic program:

Sub(x̂j; ω) minimize ( 1
2 (ŷω

j )T(ŷω
j ) − (ŷω

j )Tȳω
j )

subject to yω
j ∈ Yω

j (x̂j)

and

Yω(x̂j) =
⎧⎨
⎩ŷω

j :

⎧⎨
⎩

A2ŷω
j = b̂ω

j − A1x̂j

A3ŷω
j ≤ capω

ij

ŷω ≥ 0

⎫⎬
⎭
⎫⎬
⎭ .

It should be emphasized that, in general, a first-stage decision x̂ might render the Yω(x̂) empty.
However, in this particular case, the non-negative deviation levels uω and vω can be made arbitrarily
large to ensure that the second-stage problem is always feasible and the resulting problem is said
to possess complete recourse.

The L-shaped method for the solution of stochastic QPs requires solving a sequence of increas-
ingly constrained (QPs) (called the master problem) where the additional constraints, termed as
cuts, arise from the solution of the set of scenario-specific second-stage problems. The master
problem is given by

Masterkminimize
x̂j ,θj

1
2 x̂T

j x̂j + x̂T
j x̄j + θj

subject to
A4x̂j ≥ 0j

θ − GT
j,ix̂j ≥ gj,i, i = 1, . . . , k,

where (Gj,i, gj,i) are the coefficients of the ith (see [56] for more details) defined as

Gj,i � −
∑
ω∈�

AT
1 πω and gj,i �

∑
ω∈�

(πω)Tb̂ω
j − 1

2

∑
ω∈�

(ŷω)Tŷω,

where πω represents the vector of dual variables corresponding to the sub problem (scenario ω)
and I represents the identity matrix. Note that the ith cut associated with the jth agent requires
the solution of Sub(x̂i

j). It is worth reiterating that the complexity arising from a massive sample
space is addressed by decomposing what is a potentially massive QP into a set of |�| smaller QPs.
In the L-shaped method, the termination is contingent on the lower bound Lk

j and upper bound
Uk

j , where Lk
j and Uk

j are, respectively, defined as

Lk
j ≡ 1

2 (x̂k
j )

T(x̂k
j ) + (x̂k

j )
Tx̄k

j + θ k
j and Uk

j ≡ min{Uk−1
j , 1

2 (x̂k
j )

T(x̂k
j ) + (x̂k

j )
Tx̄k

j + Q(x̂k
j )}.

Notice that {Lk
j } is a monotonically increasing sequence while {Uk

j } is a monotonically decreas-
ing sequence. Algorithm 2 provides a formal statement of the L-shaped method [56] and its
convergence is easily proved and can be found in [7,54].

4.3 Convergence and error analysis of projection methods

Convergence of projection schemes is reliant on the underlying mappings satisfying a strict
or strong monotonicity property. The absence of such a property may be addressed through a

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
Il

lin
oi

s 
at

 U
rb

an
a-

C
ha

m
pa

ig
n]

 a
t 0

8:
32

 2
1 

M
ay

 2
01

2 



Optimization Methods & Software 21

Algorithm 2 L-shaped method.

Initialize k = 1, j ∈ J , Uk
j = ∞, Lk

j = −∞
Choose ε1, τ , u > 1

3: while |Uk
j − Lk

j | > τ do
Solve (Masterk) to get (x̂k

j , θ k
j )

Update lower bound Lk
j

6: Solve Sub(x̂k
j ; ω) for all ω ∈ �

Construct (Gk
I , gk

I )

Update upper bound Uk
j and add optimality cut (Gk

I , gk
I ) to (Masterk)

9: k = k + 1
end while

Tikhonov-based regularization scheme [18]. Each iterate of the Tikhonov scheme may be solved
efficiently and in this subsection, we provide the convergence theory for the suggested dual
and primal–dual schemes for solving precisely such problems. In this section, we present three
sets of results. First, our convergence statements require a precise specification of the Lipschitz
and monotonicity constants of the relevant mapping and represents our first result. Second, we
present a convergence result for the dual scheme in a regularized setting and further equip this
result with rate estimates. The exact form of the dual scheme requires exact primal iterates for
a given dual solution. In a regime where a bound on the primal strategy sets is assumed to
be available, we relax this requirement in constructing an inexact dual method and allow for
inexact primal solutions. The third set of results focus on developing error bounds for the inexact
dual scheme in this setting along with suitable bounds on the primal suboptimality and primal
infeasibility.

Before proving the Lipschitzian and monotonicity properties of Fε , we consider the polyhedral
shared constraint denoted by Bz ≥ 0 and provide a precise relationship between ‖B‖ and the
problem size, where z is specified as follows:

z =

⎛
⎜⎜⎜⎝

p̄1
...
¯pNg

p̄0

⎞
⎟⎟⎟⎠ , p̄i =

⎛
⎜⎝

p̄1
i
...

p̄n
i

⎞
⎟⎠ , p̄ω

i =

⎛
⎜⎜⎜⎝

yω
i1
...

yω
iJ

rω
i

⎞
⎟⎟⎟⎠ ∀i ∈ G ∀ω ∈ �,

and p̄0 represents the other components of the vector z, not indicated above. Consequently, the
matrix B is defined as

B =
⎛
⎜⎝

B1 . . . 0 0
...

. . .
...

...
0 . . . BNg 0

⎞
⎟⎠ where Bi =

⎛
⎜⎝

B1
i . . . 0
...

. . .
...

0 . . . Bn
i

⎞
⎟⎠ ,

Bω
i = (1 . . . 1

) ∀i ∈ G ∀ω ∈ �. (17)

The following result gives a bound on ‖B‖, that is subsequently employed in our rate
analysis.

Lemma 4.1 Consider the matrix B defined in (17). If Nf and Ng are the total number of players
in the game and the number of generating nodes, respectively, then ‖B‖2 ≤ √Nf Ngn.
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22 A. Kannan et al.

Proof Recall that ‖B‖2 ≤ ‖B‖F , where ‖B‖F represents the Froebenius norm of the matrix
(see [23]). When B is given by (17), then

‖B‖F =
√∑

ω∈�

∑
i∈Ng

(‖J ‖ + 1) = √Nf Ngn.

�

By recalling the definitions of Fz and Fλ in (10), we further define Fε
z , Fε

λ, Fε
f and Fd as Fε

z :=
Fz + εz, Fε

λ := Fλ + ελ and

Fε
f :=

⎛
⎜⎝

∇z1π1 + εz1
...

∇zg+1πg+1 + εzg+1

⎞
⎟⎠ , Fd :=

⎛
⎜⎝

∇z1 dTλ
...

∇zg+1 dTλ

⎞
⎟⎠ , Fε

z := Fε
f − Fd . (18)

Furthermore, we define z, zi, lωi , li ui, vi, si, mi and xi as follows:

z =
⎛
⎜⎝

z1
...

zg+1

⎞
⎟⎠ , zi =

⎛
⎜⎜⎜⎜⎜⎜⎝

li
ui

vi

si

mi

xi

⎞
⎟⎟⎟⎟⎟⎟⎠ , lωi =

⎛
⎜⎜⎜⎝

yω
i1
...

yω
ig

rω
i

⎞
⎟⎟⎟⎠ , li =

⎛
⎜⎝

l1
i
...
ln
i

⎞
⎟⎠ ,

ui =
⎛
⎜⎝

u1
i1
...

un
ig

⎞
⎟⎠ , vi =

⎛
⎜⎝

v1
i1
...

vn
ig

⎞
⎟⎠ , si =

⎛
⎜⎝

s1
i1
...

sn
ig

⎞
⎟⎠ , mi =

⎛
⎜⎝

mi1
...

mig

⎞
⎟⎠ , xi =

⎛
⎜⎝

xi1
...

xig

⎞
⎟⎠ .

Using these definitions, the Lipschitz continuity and strong monotonicity constants of Fε can be
derived.

Lemma 4.2 Consider the mapping Fε(z, λ), defined in (18), arising from the Nash game. Suppose
assumptions (A1)–(A2), (A3) hold and suppose the cost functions ζω

ij are Lipschitz continuous

with constants Lij,ω
ζ , for all i ∈ N , j ∈ J and for all ω ∈ �. Then this mapping is Lipschitz

continuous and strongly monotone with constants L and ε, respectively, where

L � (M + ‖B‖ + ε), M � max
i∈G

(2N2
f (b0

i + E(bω
i + L̄i,ω

ζ ))),

and ‖B‖ ≤ √Nf Ngn.

Proof We first derive the Lipschitz constant for Fε . This requires analysing each of the three
terms.

‖Fε(z1, λ1) − Fε(z2, λ2)‖ =
∥∥∥∥
(

Fε
f (z

1, λ1) − Fε
f (z

2, λ2) + Fd(z1, λ1) − Fd(z2, λ2)

Fλ(z1, λ1) − Fλ(z2, λ2)

)∥∥∥∥ (19)
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≤ ‖Fε
f (z

1, λ1) − Fε
f (z

2, λ2)‖︸ ︷︷ ︸
Term 1

+ ‖Fd(z
1, λ1) − Fd(z

2, λ2)‖︸ ︷︷ ︸
Term 2

+ ‖Fε
λ(z

1, λ1) − Fε
λ(z

2, λ2)‖︸ ︷︷ ︸
Term 3

. (20)

We bound each of the three terms as follows:
Term 1: Given two vectors z1 and z2, we may decompose F into H + B allowing term 1 to be

expressed as

Fi(z
1) − Fi(z

2) =

⎛
⎜⎜⎝

Fl
i (z

1) − Fl
i (z

2)

Fs
i (z

1) − Fs
i (z

2)

Fm
i (z1) − Fm

i (z2)

Fx
i (z

1) − Fx
i (z

2)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

Hl
i (z

1) − Hl
i (z

2)

Hs
i (z

1) − Hs
i (z

2)

Hm
i (z1) − Hm

i (z2)

Hx
i (z

1) − Hx
i (z

2)

⎞
⎟⎟⎠

︸ ︷︷ ︸
term 4

+

⎛
⎜⎜⎝

Bl
i(z

1) − Bl
i(z

2)

Bs
i (z

1) − Bs
i (z

2)

Bm
i (z1) − Bm

i (z2)

Bx
i (z

1) − Bx
i (z

2)

⎞
⎟⎟⎠

︸ ︷︷ ︸
term 5

.

Terms in l and x are non-zero in the specification of term 4 and the first of these for i ∈ G is
bounded as shown below.

(Hl
i (z

1) − Hl
i (z

2))ω =

⎛
⎜⎜⎜⎝

2ρωbω
i (y1

i1,ω − y2
i1,ω) + (ζ ω

i1(y
1
i1,ω) − ζω

i1(y
2
i1,ω))

...
2ρωbω

i (y1
ig,ω − y2

ig,ω) + (ζ ω
ig(y

1
ig,ω) − ζω

ig(y
2
ig,ω))

ρωbω
i (r1

i,ω − r2
i,ω)

⎞
⎟⎟⎟⎠

≤

⎛
⎜⎜⎜⎝

2ρωbω
i (y1

i1,ω − y2
i1,ω)

...
2ρωbω

i (y1
ig,ω − y2

ig,ω)

ρωbω
i (r1

i,ω − r2
i,ω)

⎞
⎟⎟⎟⎠+

⎛
⎜⎝

ρω(ζω
i1(y

1
i1,ω) − ζω

i1(y
2
i1,ω))

...
ρω(ζω

ig(y
1
ig,ω) − ζω

ig(y
2
ig,ω))

⎞
⎟⎠

≤

⎛
⎜⎜⎜⎜⎝

ρω(2bω
i + Li1,ω

ζ )(y1
i1,ω − y2

i1,ω)
...

ρω(2bω
i + Lig,ω

ζ )(y1
ig,ω − y2

ig,ω)

ρωbω
i (r1

i,ω − r2
i,ω)

⎞
⎟⎟⎟⎟⎠ ≤ Ml,ω

i

⎛
⎜⎜⎜⎝

(y1
i1,ω − y2

i1,ω)
...

(y1
ig,ω − y2

ig,ω)

(r1
i,ω − r2

i,ω)

⎞
⎟⎟⎟⎠ ,

where Ml,ω
i = ρω(2bω

i + maxj∈J Lij,ω
ζ ). Similarly, for i ∈ G, the other non-zero term in term 4 is

bounded as follows:

Hx
i (z

1) − Hx
i (z

2) = Mx
i

⎛
⎜⎝

(x1
i1 − x2

i1)
...

(x1
ig − x2

ig)

⎞
⎟⎠ ,

where Mx
i = 2b0

i . By noting that when i ∈ Gc, Ml,ω
i = ρωbω

i , the Lipschitz constant for term 4,
denoted by M4, is given by

M4 = max
i∈G∪Gc

(∑
ω∈�

Ml,ω
i + Mx

i

)
≤ max

i∈G
(2(Ebω

i + b0
i ) + EL̄i,ω

ζ ), L̄i,ω
ζ = max

j∈J
Lij,ω

ζ .
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24 A. Kannan et al.

Similarly, for i ∈ G, the norms of the two non-zero terms in term 5, may be bounded through the
use of the triangle inequality in the following fashion:

‖(Bl
i(z

1) − Bl
i(z

2))ω‖

=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρω

⎛
⎝bω

i

⎛
⎝ ∑

j∈J ,j �=1

(y1
ij,ω − y2

ij,ω)

⎞
⎠+ bω

i (r1
i,ω − r2

i,ω) − bω
i (x1

i1 − x2
i1)

⎞
⎠

...

ρω

⎛
⎝bω

i

⎛
⎝ ∑

j∈J ,j �=g

(y1
ij,ω − y2

ij,ω)

⎞
⎠+ bω

i (r1
i,ω − r2

i,ω) − bω
i (x1

iJ − x2
iJ)

⎞
⎠

ρω

⎛
⎝bω

i

⎛
⎝∑

j∈J
(y1

ij,ω − y2
ij,ω)

⎞
⎠
⎞
⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
≤ M̄l,ω

i ‖z1 − z2‖,

M̄l,ω
i = ρωbω

i (1 + (g + 1)2) and

‖Bx
i (z

1) − Bx
i (z

2)‖ =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b0
i

∑
j∈J ,j �=1

(x1
ij − x2

ij) −
∑
ω∈�

ρωbω
i

⎛
⎝∑

j∈J
(y1

ij,ω − y2
ij,ω) + r1

i,ω − r2
i,ω

⎞
⎠

...

b0
i

∑
j∈J ,j �=g

(x1
ij − x2

ij) −
∑
ω∈�

ρωbω
i

⎛
⎝∑

j∈J
(y1

ij,ω − y2
ij,ω) + r1

i,ω − r2
i,ω

⎞
⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
≤ M̄x

i ‖z1 − z2‖,

where M̄x
i = g2(b0

i + Ebω
i ). The corresponding constant for i ∈ Gc is seen to be zero allowing us

to define M5, the Lipschitz constant for term 5, by

M5 = max
i∈G∪Gc

(∑
ω∈�

M̄l,ω
i + M̄x

i

)
= max

i∈G
(2(g + 1)2(b0

i + Ebω
i )).

If Nf = (g + 1), then the overall Lipschitz constant for term 1 is given by

M � max
i∈G

(2N2
f (b0

i + E(bω
i + L̄i,ω

ζ ))).

Term 2: Term 2 may be bounded as

Fd(z
1, λ1) − Fd(z

2, λ2)‖ = ‖∇d(z1)Tλ1 − ∇d(z2)Tλ2‖
≤ ‖∇d(z1)Tλ1 − ∇d(z2)Tλ1‖ + ‖∇d(z2)

T(λ1 − λ2)‖
≤ ‖∇d(z1) − ∇d(z2)‖‖λ1‖ + ‖∇d(z2)‖‖λ1 − λ2‖,

where the inequalities follow from the application of the triangle inequality and the Cauchy–
Schwartz inequality. Furthermore, ∇d(z) is a constant since d(z) is a polyhedral constraint given
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by d(z) = Bz implying that ‖∇d(z1) − ∇d(z2)‖ = 0, allowing us to conclude that

‖Fd(z
1, λ1) − Fd(z

2, λ2)‖ ≤ ‖B‖‖λ1 − λ2‖.

Term 3: Term 3 may be bounded by recalling that d(z) is polyhedral, allowing us to proceed as
follows:

‖Fλ(z1, λ1) − Fλ(z2, λ2)‖ ≤ ‖d(z1) − d(z2)‖ + ε‖λ1 − λ2‖
≤ ‖B‖‖z1 − z2‖ + ε‖λ1 − λ2‖,

where the inequalities follow again from the triangle inequality, the Cauchy–Schwartz inequality
and the functional form of d(z). It follows that the Lipschitz constant for the overall mapping is
given by (M + ‖B‖ + ε).

The strong monotonicity of the mapping Fε with monotonicity constant ε can be deduced by
noting that ∇Fε , given by

∇Fε =
(∇zFz + εI −∇dT

∇d εI

)
,

is positive definite since ∇zFz is positive semidefinite for all z. �

4.3.1 Primal–dual scheme

When the mapping Fε(z, λ) is Lipschitz continuous and strongly monotone, the convergence of
the primal–dual scheme can be claimed. Note that weaker conditions such as strict monotonicity
can also be used to be guarantee convergence while mere monotonicity requires alternate schemes
(such as two-step methods) (see [18, Chapter 12]).

Proposition 4.3 (Convergence of primal–dual scheme [18]) Consider the primal–dual scheme
given by (11) and (12). Suppose that assumptions (A1)–(A2), (A3) hold. If the steplength γ pd ≤
2ε/L2, then the sequence {(zk , λk)} converges to (z∗

ε , λ∗
ε ), an ε-Nash equilibrium of the game.

4.3.2 Exact and inexact dual schemes

In this subsection, we consider the dual scheme both in its exact and inexact forms. While a proof
for the convergence of the original dual scheme is provided in [35], we present a different argument
in a regularized setting. Crucial to this result is the supporting requirement on co-coercivity of
d(z(λ)). We provide a proof that uses the mapping Fε

z , Fε
f and Fd as defined in (20), adapted

from a result in [35]. It must be emphasized that the inexact dual has been studied recently by
the second author in a multiuser optimization setting [36,37] and our results, while couched in a
stochastic game-theoretic setting, are closely related. Yet, given that they have never been proved
for equilibrium problems, we see the results here being of relevance. Furthermore, the polyhedral
nature of d(z) simplifies some of the proofs are often simpler and allows for somewhat different
yet more refined bounds that relate the error directly to problem size.

Lemma 4.4 Consider the function d(z(λ)) where z(λ) is a solution to the primal problem (8).
Then d(z(λ)) ≡ Bz is co-coercive with constant ηcc or

(λ2 − λ1)
T(d(z(λ1)) − d(z(λ2))) ≥ ηcc‖d(z(λ2)) − d(z(λ1))‖2 for all λ1, λ2 ∈ R

m
+,

where ηcc = ε/(Nf Ngn). Furthermore, we have

‖z(λ1) − z(λ2)‖ ≤
√

Nf Ngn

ε
‖λ1 − λ2‖ for all λ1, λ2 ∈ R

m
+. (21)
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26 A. Kannan et al.

Proof Let z1 ≡ z(λ1) and z2 ≡ z(λ2) represent solutions to VI(Z, Fε
z (z; λ1)) and VI(Z, Fε

z (z; λ2)),
respectively. Then, we have

(z2 − z1)
TFε

z (z1, λ1) ≥ 0 and (z1 − z2)
TFε

z (z2, λ2) ≥ 0.

By recalling from (10), we have that

(z2 − z1)
T(Fd(z1, λ1) − Fd(z2, λ2)) ≥ (z2 − z1)

T(Fε
f (z2, λ2) − Fε

d(z1, λ1))

≥ ε‖z2 − z1‖2, (22)

where the second inequality follows from the strong monotonicity of Fε
f with constant ε. It follows

from the definition of d(z) that

(z2 − z1)
T(Fd(z1, λ1) − Fd(z2, λ2)) = (z2 − z1)

T(−BTλ1 + BTλ2)

= (Bz2 − Bz1)
T(−λ1 + λ2) ≥ ε‖z2 − z1‖2

≥ ε

‖B‖2
‖d(z1) − d(z2)‖2,

where the last two inequalities follow from (22) and the Lipschitz continuity of d(z) with constant
‖B‖. Finally by applying the Cauchy–Schwartz inequality to the first inequality above, the second
result (21) may be obtained as follows:

‖z2 − z1‖2 ≤ 1

ε
(d(z2) − d(z1))

T(λ2 − λ1) ≤ 1

ε
‖B‖‖z2 − z1‖λ2 − λ1‖

giving us

‖z2 − z1‖ ≤ ‖B‖
ε

‖λ2 − λ1‖ ≤
√

Nf Ngn

ε
‖λ2 − λ1‖. �

Using the co-coercivity of d(z(λ)), the convergence of the iterates constructed from regularized
dual scheme can be shown to converge to λ∗

ε , a dual solution to the regularized problem.

Proposition 4.5 (Convergence of exact dual scheme) Consider the dual scheme given by (13)
and (14). If d(z(λ)) is co-coercive with constant ηcc = ε/Nf Ngn and γd satisfies

γd <
2ε

2ε2 + Nf Ngn
, (23)

then ‖λk+1 − λ∗
ε‖ ≤ qk

d‖λ0 − λ∗
ε‖ where qd = (1 − γdε).

Proof By invoking the definition of λk+1, noting that λ∗ is a fixed-point of (9) and the non-
expansivity of the Euclidean projector, we have

‖λk+1 − λ∗
ε‖ = ‖�R

+
m
(λk − γdd(zk) − γdελ

k) − λ∗
ε‖

= ‖�R
+
m
(λk − γdd(zk) − γdελ

k) − �R
+
m
(λ∗

ε − γdd(z∗
ε ) − γdελ

∗
ε )‖

≤ ‖(λk − γdd(zk) − γdελ
k) − (λ∗

ε − γdd(z∗
ε ) − γdελ

∗)‖
= ‖(1 − γdε)(λ

k − λ∗
ε ) − γd(d(zk) − d(z∗

ε ))‖.
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Then, by expanding the square of the expression on the right-hand side and by leveraging the
co-coercivity of d(λ(z)) with respect to z, we have the following inequality:

‖λk+1 − λ∗
ε‖2 ≤ (1 − γdε)

2‖λk − λ∗
ε‖2

+ (γd)
2‖d(zk) − d(z∗

ε )‖2 − 2γd(1 − γdε)(λ
k − λ∗

ε )
T(d(zk) − d(z∗

ε ))

≤ (1 − γdε)
2‖λk − λ∗

ε‖2 + (γ 2
d − 2γdηcc(1 − γdε))‖d(zk) − d(z∗

ε )‖2,

where the second inequality follows from the co-coercivity of d(z(λ)) with a constant ηcc.
Convergence of the scheme follows if γd is chosen in accordance with

γd < min

{
1

ε
,

2ηcc

1 + 2ηccε

}
where ηcc = ε

Nf Ngn
.

But we have

2ηcc

1 + 2ηccε
= 1

Nf Ngn/2ε + ε
<

1

ε
implying that γd <

2ε

2ε2 + Nf Ngn
. �

The convergence of λk to λ∗
ε allows for deriving similar statements for zk and the infeasibility,

namely max(0, d(zk)).

Lemma 4.6 Consider the dual scheme given by (13) and (14) and suppose d(z(λ)) is co-coercive
with constant ε/‖B‖2. Then, for any k ≥ 0, we have

‖zk − z∗‖ ≤
√

Nf Ngn

ε
‖λk − λ∗

ε‖ and max(0, −d(zk)) ≤ Nf Ngn

ε
‖λk − λ∗

ε‖.

Proof A bound on the suboptimality may be directly obtained from Lemma 4.4. The infea-
sibility in the constraint d(z) ≥ 0, namely max(0, −d(z)), is bounded as shown through the
following sequence of relationships, that use the Cauchy–Schwartz inequality and the bound
on the suboptimality of zk:

max(0, −d(zk)) ≤ −Bzk = −B(zk + z∗
ε − z∗

ε )

≤ B(z∗
ε − zk)

≤ ‖B‖‖z∗
ε − zk‖ ≤ Nf Ngn

ε
‖λ∗

ε − λk‖. �

A shortcoming of the dual scheme is the need for exact primal solutions for every dual solution.
Since this requires iteratively solving a fixed-point problem, it can prove to be an inordinately
expensive component of the algorithm. Our intent is in constructing a bounded complexity variant
that requires that only K iterations of the primal scheme be made for a given value of the dual
iterates. This is given by

zt+1
j = �Zj (z

t
j − γd(Fz(z

t
j ; zt

−j, λ
k) + ε�zt

j)) for all j, t = 0, . . . , K − 1. (24)

However, in obtaining error bounds, we require that the primal strategy sets be bounded. It is worth
remarking that in general this bound may be difficult to obtain in closed-form but we assume that
such a bound is available for purposes of this analysis. In the current setting, one avenue for deriving
such a bound would be through imposing a bound on forward positions. In the remainder of this
section, we assume that ‖z‖ ≤ Mz throughout the remainder of this section. Finally, the strong
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28 A. Kannan et al.

monotonicity of the primal problem implies that ‖zt − z∗‖ ≤ qt/2
p ‖z0 − z∗‖, where qp = 2ε/M2 <

1 where M is the Lipschitz constant of the primal mapping Ff (z), as specified in Lemma 4.2.

Proposition 4.7 (Error bounds for inexact-dual scheme) Consider the inexact dual scheme
given by (24) and (14). If d(z(λ)) is co-coercive with constant ε/‖B‖2, ‖z‖ ≤ Mz and γd satisfies

γd <
2ε

2ε2 + Nf Ngn
,

then we have

‖λk − λ∗
ε‖ ≤ qk

d‖λ0 − λ∗
ε‖k

+
(

1 − qk
d

1 − qd

)((
2

ε2
+ 4

)
(Nf Ngn)1/2qK/2

p M2
z (1 + (Nf Ngn)1/2qK/2

p )

)
.

Proof As earlier, the definition of λk+1 and the fixed-point property of λ∗
ε , we have the following

inequality:

‖λk+1 − λ∗
ε‖ = ‖�R

+
m
(λk − γd(d(zk

K) + εkλ
k)) − �R

+
m
(λ∗

ε − γd(d(z∗) + εkλ
∗
ε ))‖

≤ ‖(λk − γd(d(zk
K) + εkλ

k)) − (λ∗
ε − γd(d(z∗) + εkλ

∗
ε ))‖.

By adding and subtracting terms and by using the triangle inequality, the right-hand side can be
shown to be

‖(λk − γd(d(zk
K) + ελk)) − (λ∗ − γd(d(z∗) + εkλ

∗
ε ))‖2

= ‖(1 − γdε)(λ
k − λ∗

ε ) − γd(d(zk
K) − d(z∗

ε ))‖2

= (1 − γdε)
2‖λk − λ∗

ε‖2 + γ 2
d ‖d(zk

K) − d(z∗
ε )‖2︸ ︷︷ ︸

term 1

−2γd(1 − γdε)(λ
k − λ∗

ε )
T(d(zk

K) − d(z∗
ε ))︸ ︷︷ ︸

term 2

.

By noting that d(zk) is given by Bzk ≥ 0 for some matrix B, it follows that term 1 can be bounded by

‖d(zk
K) − d(z∗

ε )‖2 ≤ ‖d(zk
K) − d(zk)‖2 + ‖d(zk) − d(z∗

ε )‖2

+ 2‖d(zk) − d(zk
K)‖‖d(zk) − d(z∗

ε )‖.

Furthermore, by using the co-coercivity of d(x(λ)), term 2 may be bounded in the following
fashion:

− 2γd(1 − γdε)(λ
k − λ∗

ε )
T(d(zk

K) − d(z∗
ε ))

= −2γd(1 − γdε)(λ
k − λ∗

ε )
T(d(zk) − d(z∗

ε )) − 2γd(1 − γdε)(λ
k − λ∗

ε )
T(d(zk

K) − d(zk))

≤ −2γd(1 − γdε)
ε

‖B‖2
‖d(zk) − d(z∗

ε )‖2 + γ 2
d ‖λk − λ∗

ε‖2 + (1 − γdε)
2‖d(zk

K) − d(zk)‖2.
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Using the bounds on terms 1 and 2, we have the following:

(1 − γdε)
2‖λk − λ∗

ε‖2 + γ 2
d ‖d(zk

K) − d(z∗
ε )‖2 − 2γd(1 − γdε)(λ

k − λ∗
ε )

T(d(zk
K) − d(z∗

ε ))

≤ (1 − γdε)
2‖λk − λ∗

ε‖2 + γ 2
d

(‖d(zk
K) − d(zk)‖2 + ‖d(zk) − d(z∗

ε )‖2
)

+ γ 2
d

(
2‖d(zk) − d(zk

K)‖‖d(zk) − d(z∗
ε )‖
)− 2γd(1 − γdε)

ε

‖B‖2
‖d(zk) − d(z∗

ε )‖2

+ γ 2
d ‖λk − λ∗

ε‖2 + (1 − γdε)
2‖d(zk

K) − d(zk)‖2

= ((1 − γdε)
2 + γ 2

d

) ‖λk − λ∗
ε‖2 +

(
γ 2

d − 2γd
ε

‖B‖2
(1 − γdε)

)
‖d(zk) − d(z∗

ε )‖2

︸ ︷︷ ︸
term 3

+ (γ 2
d + (1 − γdε)

2)‖d(zk
K) − d(zk)‖2 + 2γ 2

d ‖d(zk) − d(zk
K)‖‖d(zk) − d(z∗

ε )‖︸ ︷︷ ︸
term 4

.

If γd is chosen in accordance with

((1 − γdε)
2 + γ 2

d ) < 1, γd <
1 + ε2

2ε

(γ 2
d − 2γdηcc(1 − γdε)) < 0, γd <

2ηcc

1 + 2ηccε
,

=⇒ γd < min

(
1 + ε2

2ε
,

2ηcc

1 + 2ηccε

)
.

then term 3 would lead to a contraction. However, it can be seen that

2ηcc

1 + 2ηccε
= 1

Nf Ngn/2ε + ε
<

1

2ε
<

1 + ε2

2ε
,

if Nf Ngn/2ε > ε or Nf Ngn > 2ε2. It suffices that

γd <
2ε

2ε2 + Nf Ngn
.

Note that the error arising from term 4 may be bounded by recalling that d(z) = Bz is a Lipschitz
continuous mapping implying that

(γ 2
d + (1 − γdε)

2)‖d(zk
K) − d(zk)‖2 + 2γ 2

d ‖d(zk) − d(zk
K)‖‖d(zk) − d(z∗

ε )‖
≤ (γ 2

d + (1 − γdε)
2)‖B‖2‖zk

K − zk‖2 + 2γ 2
d ‖B‖‖zk − zk

K‖Mz.

Then by observing that ‖zk − zk
K ≤ ‖zk − zk

0‖qK/2
p ≤ Mzq

K/2
p , where the first inequality follows

from geometric convergence of the sequence {zk
K} to zk as K −→ ∞ and the second follows from

the boundedness of the primal space with bound Mz. It follows that

(γ 2
d + (1 − γdε)

2)‖B‖2‖zk
K − zk‖2 + 2γ 2

d ‖B‖‖zk − zk
K‖Mz

≤ (γ 2
d + (1 − γdε)

2)‖B‖qK
p M2

z + 2γ 2
d ‖B‖2qK/2

p M2
z .
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Finally, by observing that (γ 2
d + (1 − γdε)

2) ≤ (γ 2
d + (1 + γdε)

2) which is further bounded by
(1/ε2 + 4) and γ 2

d ≤ 1/ε2, we have

(γ 2
d + (1 − γdε)

2)‖B‖qK
p M2

z + 2γ 2
d ‖B‖2qK/2

p M2
z

≤
(

1

ε2
+ 4

)
‖B‖qK

p M2
z + 2

ε2
‖B‖qK/2

p M2
z

≤
(

2

ε2
+ 4

)
‖B‖qK/2

p M2
z (1 + ‖B‖qK/2

p )

≤
(

2

ε2
+ 4

)
(Nf Ngn)1/2qK/2

p M2
z (1 + (Nf Ngn)1/2qK/2

p ).

Then given a starting point λ0, we have

‖λk − λ∗
ε‖ ≤ qk

d‖λ0 − λ∗
ε‖k

+
(

1 − qk
d

1 − qd

)((
2

ε2
+ 4

)
(Nf Ngn)1/2qK/2

p M2
z (1 + (Nf Ngn)1/2qK/2

p )

)
︸ ︷︷ ︸

Error from inexact solution of primal

.

�

It can be seen that the error term arising from inexact primal solutions converges to zero as
K −→ ∞. We conclude this section with a bound on the suboptimality of zk and infeasibility
associated with d(zk) if the dual scheme terminates prematurely.

Lemma 4.8 Consider the inexact dual scheme given by (24) and (14). If d(z(λ)) is co-coercive
with constant ε/‖B‖2, ‖z‖ ≤ Mz and γd satisfies

γd <
2ε

2ε2 + Nf Ngn
.

Then, for any non-negative integers k, K ≥ 0, we have

‖zk
K − z∗

ε‖ ≤ qK/2
p Mz +

√
Nf Ngn

ε
‖λk − λ∗

ε‖,

max(0, −d(zk
K)) ≤ √Nf Ngn

(
qK/2

p Mz +
√

Nf Ngn

ε
‖λk − λ∗

ε‖
)

.

Proof The first result follows easily by using the triangle inequality and employing the earlier
result.

‖zk
K − z∗

ε‖ ≤ ‖zk
K − zk‖ + ‖zk − z∗

ε‖

≤ qK/2
p Mz +

√
Nf Ngn

ε
‖λk − λ∗

ε‖.

Similarly, the bound on the infeasibility at a point zk
K is provided by adding and subtracting d(z∗

ε ),
applying the triangle and Cauchy–Schwartz inequality:

max(0, −d(zk
K)) ≤ −d(zk

K) = −d(zk
K) + d(z∗

ε ) − d(z∗
ε )

≤ −B(zk
K − z∗

ε ) ≤ ‖B‖‖zk
K − zk‖ + ‖B‖‖zk − z∗

ε‖

≤ (Nf Ngn)1/2qK/2
p Mz + Nf Ngn

ε
‖λk − λ∗

ε‖. �
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4.3.2.1 Summary of mathematical findings: We conclude this subsection with a review of the
main results of the findings from Sections 3 and 4:

(1) Existence and ε-uniqueness: In Section 3, the focus lies on developing statements of existence
(Proposition 3.5) and ε-uniqueness (Proposition 3.6), the latter being a consequence of the
monotonicity of the associated mapping.

(2) Cutting-plane projection scheme: In Section 4, we consider a projection-based scheme that
is naturally distributed across firms. However, each projection step reduces to stochastic
quadratic programme that direct solvers find challenging to solve since its size grows with
|�|. Instead, a cutting-plane scheme is presented that scales slowly in complexity with |�|.

(3) Error analysis: Finally, in Section 4, we examine three variants of a standard projection
scheme, a primal–dual scheme, an exact dual scheme and an inexact dual scheme in the
context of a regularized problem. While convergence of the first of these follows immediately,
Proposition 4.5 proves the convergence of the exact dual scheme while error bounds are
provided in Lemma 4.6. However, computing the exact dual scheme relies on an exact solution
of the primal solution, often a computationally burdensome requirement. One may choose
to use a bounded complexity variant where a fixed number of gradient steps is employed for
computing an inexact primal solution. In this context, Proposition 4.7 and Lemma 4.8 derive
analogous error bounds that are directly tied to the number of gradient steps in the primal.

4.4 Numerical performance

In this section, we examine the performance of our hybrid projection-based cutting-plane scheme
with a focus on several questions. First, we consider whether the scheme scales with |�|, |J | and
|N |. Second, we examine the relative performance of the primal–dual versus the dual scheme.
Finally, we examine the benefits arising from inexact solutions of the primal problem.

We confine our discussion to the game and examine the behaviour of the scheme on a regularized
game with ε = 1 × 10−3. In our computational results, we define the loss function to be of the
form: ρω

ij = χ(xij − capω
ij )

+, where χ = 0.5. Therefore, in addition to the earlier set of constraints
we have another constraint stating that sω

ij ≥ −mij. Furthermore, we maintain χ to be the same
across all agents. The risk aversion parameters are assumed to be 0.5 for all the agents unless
specified otherwise. The nodal demand function intercepts were taken to be 150 and 200 for
the spot and forward markets, respectively, across all nodes while the slopes of the spot-market
price functions are specified to be normally distributed as per N(1, 0.02) in the forward and spot
markets. The algorithm was implemented in Matlab 7.0 on a Linux OS with a processor with a
clockspeed of 2.39 GHz and a memory of 16 GB.

4.4.1 Scalability

The algorithm is implemented in a distributed fashion with each agent solving his projection
problem independently. As a consequence, we expect that the effort should scale with the number
of agents. When the number of firms is raised from 2 to 11, the variation of serial and parallel
times are shown in Figure 3. Note that the parallel time is computed assuming that there are as
many processors as there are agents. The variation in the number of overall projection steps with
increase in the number of firms is also shown in Figure 3. The projection scheme is terminated
when εinner = 5 × 10−3. Both graphs show that the effort, both in terms of CPU time and projection
steps, grows slowly with the number of firms.

If an analogous question is studied when the number of generating nodes is varied, we observe
similar results, as shown in Figure 4. Note that the nodal problems decompose by the firm level
implying that large networks, while computationally expensive, will not lead to rapid growth in
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Figure 3. Scalability of effort with number of firms.
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Figure 4. Scalability of effort with number of generating nodes.

Figure 5. Scalability of effort with sample size.

effort. Instead, such settings will necessitate the solution of a larger number of separable nodal
problems.

Perhaps the most challenging source of complexity arises from the scenario-based approach
for capturing uncertainty. This leads to arbitrarily large projection problems which are addressed
through a cutting-plane method. If the number of scenarios is increased from 30 to 240, then the
variation of serial times is as seen in Figure 5. Additionally, the variation in the number of overall
projection steps is also shown in Figure 5. Finally, it is observed that the effort grows slowly with
an increase in the size of the sample space, suggesting that the decomposition schemes are indeed
scalable.

It is worth noting that direct solvers are poorly suited for addressing such problems. Consider
the application of path to this class of problems. Table 1 reports the time taken by the PATH
solver for seventeen problems 9. A case with three generating firms and five generating nodes was
considered and the number of scenarios were varied from n = 10 to n = 200. The forward and
spot intercepts were taken to be 1400 and 1200 respectively. The capacities were taken to follow
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Table 1. PATH solver
(CPU time).

n Time (s)

10 0.23
20 0.73
30 2.13
40 3.76
50 10.98
60 15.48
70 21.00
80 33.26
90 39.21

100 49.23
110 64.51
120 69.99
130 83.68
140 99.02
150 129.52
160 138.64
170 ∗
180 ∗

N(400, 2) for all generators across all nodes. The linear and quadratic generation costs were taken
to be N(12, 1) and N(0.3, 0.01) respectively for the first two generators. The third generator was
assumed to have no costs of generation. The linear and quadratic penalties for deviation were taken
to be 0.1 for all generators across all nodes. Finally, failure of path is denoted by * and indicates
that path does not return a solution. We observe that beyond 160 scenarios, path appears to have
difficulty loading the problem into memory and provides further incentive for the development
of decomposition-based schemes.

4.4.2 Comparison between primal-dual and dual schemes

A two firm problem, under the setting of one generating node was taken as a case study to compare
the primal-dual and inexact dual schemes. The primal and dual step lengths were taken to be 2
for all the cases. Different instances of the above problem were solved by varying the demand
and generation capacities. Instances 1 to 6 represent increasing values of (a, a0) from (150, 200)

to (400, 450) respectively in steps of 50. Generation capacities were correspondingly increased
from (N(100, 0.5)) to (N(162.7, 0.5)) in steps of 12.7. The above set of problems was solved for
ten, fifteen, twenty and twenty-five scenarios. Table 2 shows the number of iterations and the time
taken to solve each problem by means of the primal dual and inexact dual methods. In the case of
inexact dual methods, we show results for one, five and nine inexact primal steps. It can be seen
that the primal-dual schemes tend to be more efficient than dual scheme while fewer inner primal
steps are generally advisable in the context of dual schemes.

4.4.3 CVaR measures under general sample spaces

In this paper, we assume that the sample space is finite and comprises of the scenarios provided.
In the numerical results, these scenarios are generated from prescribed distributions. In such a
regime, the CVaR can be exactly computed. If, however, one considers a general measure space,
the obtained solutions to the scenario-based problem are merely estimators. Sample-average
approximation techniques have been studied extensively with two explicit goals: (i) Almost-
sure convergence of the associated estimators to the true object and (ii) rate of convergence
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34 A. Kannan et al.

Table 2. Comparison: Primal dual and inexact dual algorithms.

Primal–dual Dual-1 Dual-5 Dual-9

n Inst. Steps Time (s) Dual steps Total Time (s) Dual steps Total Time (s) Dual steps Total Time (s)

10 1 53 49.34 53 53 50.50 14 70 79.80 9 81 98.18
2 50 45.12 50 50 46.18 12 60 53.07 9 81 81.54
3 50 47.72 50 50 48.64 12 60 46.94 8 72 57.00
4 49 55.92 49 49 57.06 12 60 58.00 9 81 89.13
5 50 54.36 50 50 55.56 14 70 81.56 10 90 110.53
6 50 48.76 50 50 49.71 12 60 53.60 8 72 63.84

15 1 81 88.24 81 81 89.95 19 95 105.49 12 108 129.69
2 76 101.36 76 76 103.00 18 90 121.50 11 99 127.95
3 74 95.94 74 74 97.91 18 90 110.55 13 117 146.83
4 74 103.84 74 74 105.47 18 90 122.76 11 99 127.25
5 75 120.41 75 75 122.85 18 90 133.81 12 108 171.43
6 75 122.29 75 75 124.70 18 90 149.65 11 99 149.65

20 1 108 180.32 108 108 183.22 25 125 207.85 16 144 249.98
2 99 202.71 99 99 206.86 24 120 252.98 15 135 282.00
3 97 173.93 97 97 176.48 24 120 220.43 14 126 209.15
4 99 191.78 99 99 194.93 24 120 208.75 14 126 208.99
5 98 183.08 98 98 186.31 24 120 212.35 14 126 202.91
6 100 191.86 100 100 195.46 25 125 227.13 17 153 244.62

25 1 134 328.33 134 134 337.08 32 160 391.47 19 171 420.41
2 122 289.25 122 122 294.83 29 145 337.35 18 162 388.56
3 122 302.28 122 122 310.46 29 145 331.56 22 198 488.53
4 120 289.69 120 120 294.15 29 145 343.48 21 189 381.28
5 121 275.68 121 121 280.89 29 145 307.61 19 171 364.32
6 121 272.19 121 121 274.31 29 145 309.52 19 171 366.11

analysis of the associated estimators. The presence of the CVaR measure makes the sample-
average problem non-smooth and complicates the convergence analysis of the estimators. Some
of these questions have been examined in the context of optimizing CVaR measures [12,44] but
less so in game-theoretic regimes.

5. Insights for market design and operation

In this section, we provide some insights for market design and operations by examining the
strategic behaviour of agents in the setting of a 53-node network, referred to as the Belgian
grid and shown in Figure A1 in the appendix. This network has provided the basis for prior
studies [62,63] and the impedances and capacities along all the transmission lines are listed in
Table A2. We assume that nodes 7, 9, 10, 11, 14, 22 and 24 house generation facilities. We assume
that the generation mix at each of these nodes is identical and is specified by Table 3 (total across all
nodes is shown). Note that in practice, truncated normal distributions are employed throughout;
specifically, the left tail of the distribution is truncated beyond 1. Here, the generation capacities
and costs are assumed to be normally distributed across 30 scenarios (n = 30). Demand at all
the nodes is articulated through affine functions. In the forward-clearing model, the intercepts in
the forward and spot markets are taken to be fixed at 1500 at all nodes while the slopes in the
spot market are assumed to vary normally with a mean of 1 and a standard deviation of 0.02. The
parameter τj is taken to be 0.9 for all the firms and χ = 40.

Our intent lies in ascertaining the relationship of a variety of parameters, such as risk-aversion,
uncertainty and demand levels, on market outcomes such as forward market participation and
penetration levels of wind resources. The complementarity problems are solved via knitro [8].10

The detailed formulation of the complementarity problems can be found in the appendix.
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Table 3. Generator details.

Generator type Capacity Linear cost Quadratic cost

Oil 1 N(2000, 10) N(10, 1) N(0.3, 0.01)

Oil 2 N(2000, 10) N(10, 1) N(0.3, 0.01)

Wind 3 N(650, 270) N(0, 0) N(0, 0)

Wind 4 N(730, 320) N(0, 0) N(0, 0)

Coal 5 N(1400, 10) N(12, 1) N(0.25, 0.01)

Coal 6 N(1400, 10) N(12, 1) N(0.25, 0.01)
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Figure 6. Impacts of increasing risk aversion.

5.1 Risk aversion

In this setting, we vary risk aversion parameter κi for all the firms from 0 to 3 in steps of 0.5. This
can be viewed as an effect of higher risk-based penalties imposed by the system operator.As shown
in Figure 6, we find that the forward bids drop for the wind generators and increase for the coal and
oil generators. This behaviour suggests that as generators become risk-averse, firms with a larger
number of wind-based assets tend to be conservative in forward market bidding. This is primarily
because firms with uncertain generation face much higher risk of shortfall. As they are penalized
higher amounts for exposing the market to such risk, firms tend to bid lower, reducing their risk
exposure. This is manifested through lower participation in the forward market by wind-based
generators. In a prisoner’s dilemma-type effect, generators exposed to less risk tend to increase
their positions in the forward market. Figure 6 also shows that the excess of forward price over
expected spot price (risk premium) increases with risk aversion. This is expected as total forward
participation reduces, thereby raising forward prices, and leading to higher premiums.

5.2 Uncertainty in generation capacity

Under the assumption that firms are assumed to have a constant risk aversion (fixed at 1 for all
firms), we examine the relationship between uncertainty in capacity and risk exposure and level
of forward participation. While coal and oil generators are expected to be close to deterministic
in their availability, we assume that wind generators are faced with far greater uncertainty. In our
numerical experiments, we vary the standard deviation of the wind generators (Wind 3 and Wind
4) from 10 to 885 in steps of 175. Expectedly, the risk exposure increases as the variability in
wind assets grows (Figure 7). Moreover, while the general belief would be that participation in
the forward markets would aid in hedging spot-market uncertainty, when risk-based penalties are
introduced, we observe that wind-based generators are less inclined to participate. It should be
emphasized that the deviation costs tend to have a similar impact on behaviour. Note that drops in
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Figure 7. Impact of increasing uncertainty in wind-based capacity.

Table 4. System risk, nodal forward and spot prices with varying uncertainty.

Node 7 Node 22
Uncertainty System risk
θ (total CVaR) p0

i Epω
i p0

i − Epω
i p0

i Epω
i p0

i − Epω
i

20 11381.38 1381.17 1412.83 −31.67 1427.27 1415.06 12.21
2−1 5263.32 1374.64 1409.92 −35.28 1424.73 1412.35 12.38
2−2 0.00 1366.43 1408.52 −42.09 1423.28 1411.29 11.99
2−3 0.00 1361.19 1407.87 −46.68 1422.73 1410.85 11.68
2−4 0.00 1358.55 1407.55 −49.00 1422.16 1410.64 11.52
2−5 0.00 1357.23 1407.38 −50.15 1421.97 1410.53 11.44
2−6 0.00 1356.57 1407.30 −50.73 1421.87 1410.48 11.40
2−7 0.00 1356.24 1407.26 −51.02 1421.83 1410.45 11.38
2−8 0.00 1356.08 1407.24 −51.16 1421.80 1410.44 11.37
2−9 0.00 1356.00 1407.23 −51.24 1421.79 1410.43 11.36

forward market participation lead to higher prices in the forward market with respect to the spot
and are captured by an increase in risk-premium with higher uncertainty in wind assets.

5.3 System uncertainty

In addition to uncertain availability, a natural question is how system uncertainty affects nodal
prices in such settings. We consider a setting with four generators with seven generating nodes. The
total generation capacity for each generator is given by N (1500, 400θ). The linear and quadratic
costs of generation are given by N (12, 2θ) and N (0.3, 0.03θ), respectively, where θ is the scaling
of the variance. The risk aversion parameters κ and χ are assumed to be 1 and 0.5, respectively,
for all agents and 10 scenarions are employed. The forward and spot intercepts are fixed to be
1500 across all nodes and for all scenarios while the forward and spot slopes are taken to be 1
across all nodes and all scenarios. Table 4 reports the spot prices, forward prices, and the risk
premium as θ is driven to zero; in effect, we consider how prices change from a stochastic setting
to an almost deterministic setting. Several observations may be made. A key observation that can
be made is that when firms compete with uncertain assets, they encounter a risk penalty; however,
as the level of uncertainty falls, firms make decisions that lead to little or no risk since they have
complete foresight on the future.

5.4 Specification of forward price functions

A crucial question is how the choice of forward price function influences the results. In no-
arbitrage models, this problem does not appear since the forward price function is not explicitly
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Table 5. Relationship of forward participation and risk premiums to forward price functions.

Node 7 Node 10 Node 11

Intercepts Total bids p0
i − Epω

i Total bids p0
i − Epω

i Total bids p0
i − Epω

i

450 0 −621.64 0 −689.73 0 −424.67
600 0 −471.64 0 −539.73 0 −274.67
750 0 −321.64 0 −389.73 0 −124.67
900 0 −171.64 0 −239.74 22.20 3.53

1050 0 −21.64 0 −89.73 149.35 28.71
1200 107.48 19.62 52.73 8.52 275.17 55.20
1350 229.01 46.68 178.06 121.77 403.47 35.55
1500 351.73 72.74 303.77 62.19 534.44 100.68
1650 478.82 93.97 434.17 84.24 665.41 122.11

defined. In our market clearing models, we expect that our assumption on forward price function
have significant impact on the results that emerge. Yet, it appears that for sufficiently low forward
price intercepts, there is no forward market participation since the revenues garnered through
participation are not sufficient. However, beyond a certain level, forward market participation
becomes positive. Therefore, while the precise level of the forward market intercept is not as
relevant, if the prices are set too low (a consequence of low intercepts), then this adversely affects
bidding in this market.

In our experiments, we fix the spot intercepts, slopes and forward slopes and vary the forward
intercepts from 150 to 1800 in steps of 150. We find that there are no forward bids till a particular
threshold of the forward intercept. Beyond this level, the forward bids and the premium increases
as the forward intercept increases. Table 5 shows the variation of the forward bids and premium
across nodes 7, 10 and 11. We find that when there is no risk premium, there is no forward
participation (when the expected spot prices are greater than the forward prices) and vice versa.
When the risk premium is positive, there is an incentive for bidding in the forward market.

5.5 Increasing penetration of wind

As the role of renewables in the nation’s fuel mix grows, a question that remains is whether
forward markets will continue to attract participation. We investigate this question by increasing
the mean of the capacity of the wind generators from 300 to 2050 in steps of 350 and also raise
the standard deviations in availability from 150 to 1025 in steps of 175. We observe that for a
fixed level of risk aversion, the forward bids of all the firms increase with increasing wind power
penetration. This is in response to the volatility in the spot market with wind power penetration
(Figure 8). It is also observed that with increasing wind power penetration, there is a significant

Figure 8. Increasing penetration-wind.
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increase in profits of wind generators at the expense of the profits of firms with no wind assets as
shown.

5.6 Introduction of ramping constraints

The current model may be extended to include ramping constraints. In one such extension, firms
may day-ahead bids for a set of T consecutive hours. The second stage problem requires taking
recourse over T consecutive period, coupled by linear ramping constraints. The associated vari-
ational problem is slightly more intricate but analogous avenues may be employed for providing
existence statements. From an algorithmic standpoint, it can be seen that these constraints destroy
the block diagonal property of the Jacobian of the variational mapping (as associated with the
second-stage problems). The current algorithm can be applied directly since the structure of the
projection problem is maintained as a stochastic quadratic program, albeit a more intricate one.
In fact, the second-stage problem of the two-stage stochastic QP is a T -period problem which can
itself be decomposed.

6. Summary

This paper is motivated by the need to manage risk exposure in the face of growing supply-side
uncertainty in power markets, as a consequence of increasing penetration of wind power. Current
market designs do not have a mechanism for managing this risk, and risk seeking generators are
not held responsible for risk exposure; instead, this responsibility is borne by the system operator.

In this paper, we consider an uncertain two-period stochastic game where firms are charged
a risk-based penalty. The resulting problem is a generalized stochastic Nash game where agents
can be viewed as risk-averse and make first-period and second-period recourse decisions. By
observing that the coupling between the strategy sets is through a set of shared constraints, a
subset of equilibria to the original game are given by the solution to an appropriately defined
variational inequality.

Risk-averseness in the agent problems is captured through a conditional value-at-risk (CVaR)
measure that leads to non-smoothness. In fact, when these agent-specific measures are independent
of competitive interactions, the related smooth games are shown to lead to monotone variational
inequalities that are shown to admit solutions.

The monotonicity of the mapping in the variational problem allows for the use of regularized
distributed projection schemes, both in a single time-scale (primal-dual) setting and a two time-
scale (dual) setting. Rate of convergence estimates are provided for the dual scheme when the
primal solution is computed exactly. A bounded complexity extension that allows for inexact
computations of primal solution is also studied and leads to the provision of error bounds for the
primal solution, dual solution and the infeasibility. The scalability of the projection scheme with
|�|, the cardinality of the sample space is contingent on effective solution of the projection step.
In fact, we observe that this step essentially requires the solution of a strongly convex stochastic
program and can be solved through a cutting-plane method that scales well with the cardinality
of the sample space. Numerical results support that the scheme scales well with the size of the
network, the number of firms and the size of the sample space.

The paper concludes with a discussion of insights for market design and operation by applying
the model to a 53-node network drawn from the Belgian grid. Through this model, we observe
that higher levels of risk-aversion lead to lower participation in the forward markets by agents
with uncertain assets. Furthermore, higher levels of uncertainty in generation capacity leads to
lower levels of forward participation. When forward price intercepts are sufficiently high, firms
have incentives to participate in the forward market leading to a positive premium.
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Notes

1. If generators make bids in the day-ahead market that are characterized by a higher likelihood of shortfall in the
real-time market than a prescribed threshold, then such bids are referred to as ‘aggressive.’

2. It should be noted that over generation may also lead to reliability concerns. A direct extension of such penal-
ties to accommodate both under and over-generation may discourage firms from deviating from day-ahead bids.
Incorporating such concerns remains a focus of future research.

3. A single settlement market model refers to one where a single clearing is analysed while a two-settlement market
considers two market clearings (such as day-ahead and real-time markets) and, in some instances, models the second
clearing as uncertain.

4. Network constraints are modelled by means of distribution factors or in other words, a DC approximation (lin-
earization) of Kirchhoff’s laws. The details on computing various power distribution factors are discussed in [42].
In our work, we employ one of the distribution factors, namely the Injection Shift Factor (ISF). If Q refers to the
power distribution factor matrix, then Ql,i (lth row and ith column of Q) refers to the power flowing in line l due to
unit injection of power at node i. In the use of ISF, one of the nodes in the network is assumed to be a slack node. By
this assumption, injection or withdrawal of power at a slack node does not induce flow on any line in the network.

5. In general, firms cannot generate at all nodes but, for notational ease, we assume that all firms can generate at all
nodes. This is overlaid by a set of additional constraints that reflect whether these firms can indeed generate at such
nodes. Specifically, yω

ij , uω
ij , vω

ij , sω
ij , mij , xij ≡ 0, ∀i ∈ Gc, ∀ω ∈ �, ∀j ∈ J . Refer to table A1 for notational details.

Firms do not house generation facilities at all nodes. Therefore this also holds ∀i ∈ J c
i . These are introduced in the

set Zj appropriately and excluded from the formulation to ease the notation.
6. Note that in some settings, the variational equilibrium does not suffice. For instance, the question of interconnected-

ness across multiple grids has been recently studied in detail by Smeers and his coauthors [58] and the focus therein
lies on analysing the quasi-variational inequalities associated with the generalized Nash game. In such settings,
the Lagrange multiplier (interpreted as prices) associated with the ‘shared’ constraint need not be shared and such
equilibria cannot be captured by a VE and one needs to instead focus on the quasi-variational inequality and its
solution set.

7. Here sref is finite because cap is finite and 	ij(0, capω
ij ) is also finite.

8. Note that � denotes the projection,
∏

denotes the cartesian product and π denotes the player objectives.
9. The implementation was done on Matlab 7.11.0.584 (R 2011b) on a Linux OS with a processor with a clockspeed

of 2.651 GHz and a memory of 8 GB.
10. Note that the path solver would have proved to be a better choice but was not available to us on the Tomlab

environment on Linux.
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Appendix 1. Notation and Network details

A.1 The complementarity problem

Under the assumptions of regularity, the variational inequality can be written in the form
of a complementarity problem. The solution to the complementarity problem is the same as
that of the VI and in turn a solution for the original GNP. For computation, we solve the
complementarity problem to obtain the solution of the VI and in turn a solution to the orig-
inal GNP. For our computation, we assume the loss function to be linear. Let us assign the
multipliers αω

ij and βω
ij to equality and capacity constraints, respectively, for the firms’ prob-

lems. Let γ ω
ij and δω

ij refer to the constraints with respect to sω
ij (firms’ problems). Let, μω and

σω
l , ηω

l be the multipliers assigned to the power balance/equality and transmission constraints
of the independent system operator. Let φω

i represent the multiplier for the shared constraint.
Then, the complementarity problem is given by (note that indexing is omitted for purposes of
brevity):

0 ≤ xij ⊥ b0
i xij + b0

i

∑
j∈J

xij − a0
i +
∑
ω∈�

ρωaω
i −

∑
ω∈�

ρωbω
i

⎛
⎝∑

j∈J
yω

ij + rω
i

⎞
⎠

−
∑
ω∈�

αω
ij + χ

∑
ω∈�

δω
ij ≥ 0,
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0 ≤ yω
ij ⊥ ρω

⎛
⎝−aω

i + cω
i + (bω

i + dω
ij )y

ω
ij + bω

i

⎛
⎝∑

j∈J
yω

ij

⎞
⎠+ bω

i rω
i − bω

i xij

⎞
⎠

+ αω
ij + βω

ij − φω
i ≥ 0,

0 ≤ uω
ij ⊥ −αω

ij ≥ 0,

0 ≤ vω
ij ⊥ αω

ij ≥ 0,

0 ≤ sω
ij ⊥ κjρ

ω

1 − τ
− γ ω

ij − δω
ij ≥ 0,

free ⊥ κj −
∑
j∈J

γ ω
ij −

∑
j∈J

δω
ij = 0,

0 ≤ βω
ij ⊥ capω

ij − yω
ij ≥ 0,

0 ≤ γ ω
ij ⊥ sω

ij + mij ≥ 0,

0 ≤ δω
ij ⊥ sω

ij + mij − χ(xij − capω
ij ) ≥ 0,

free ⊥ yω
ij − xij + uω

ij − vω
ij = 0,

0 ≤ φω
i ⊥

∑
j∈J

yω
ij + rω

i ≥ 0,

free ⊥ −ρωaω
i + ρωbω

i

⎛
⎝∑

j∈J
yω

ij + rω
i

⎞
⎠+ μω +

∑
l∈L

Ql,i(σ
ω
l − ηω

l ) − φω
i = 0, i ∈ G,

rω
i ⊥ −ρωaω

i + ρωbω
i rω

i + μω +
∑
l∈L

Ql,i(σ
ω
l − ηω

l ) ≥ 0, i ∈ (Gc − {51}),

rω
i ⊥ −ρωaω

i + ρωbω
i rω

i + μω ≥ 0, slack node-51,

free ⊥
∑
i∈N

rω
i = 0,

σω
l ⊥ Kω

l −
∑
i∈N

Ql,ir
ω
i ≥ 0,

ηω
l ⊥ Kω

l +
∑
i∈N

Ql,ir
ω
i ≥ 0.
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Table A1. Notation.

xij Forward decision of generation from firm j at node i
uω

ij , vω
ij Positive and negative deviations, respectively, at scenario ω from firm j at node i

yω
ij , capω

ij Total spot generation decision and total generation capacity at scenario ω for firm j at node i
rω

i ISO’s spot decision at scenario ω at node i
n,�, ρω Number of scenarios, set of all scenarios and probability of scenario ω

pω
i Nodal demand function or price at scenario ω at node i

cω
ij , dω

ij Coefficient of linear and quadratic terms in the cost function at scenario ω for firm j at node i
fp, fn Penalty functions for positive and negative deviations
Ng,N Number of generating nodes and total nodes in the network
a0

i , b0
i Intercept and Slope respectively at node i in the forward market

aω
i , bω

i Intercept and Slope respectively at node i at scenario ω

g + 1 Number of agents including g firms and the ISO – (g + 1)th agent
Ql,i Power flowing across line l due to unit injection/withdrawal of power at node i
κj , ∀j ∈ J Risk factor or risk aversion parameter for firm j
Nj , N c

j Set of all generating nodes and non-generating nodes for firm j respectively
Ji Set of all generating firms at node i
mij Value at risk for firm j at node i
sω

ij Conditional value at risk for firm j at node i at scenario ω

L, N Set of all transmission lines and set of all nodes respectively
G, Gc Set of all generating nodes and load nodes respectively
J , A Set of all generating firms and set of all agents (firms and the ISO), respectively

Table A2. Network details.

Line Imp. (Ohm) Cap.(MW) Line Imp. (Ohm) Cap.(MW) Line Imp. (Ohm) Cap.(MW)

1–2 23,716 345 16–17 2,633 5,154 34–37 7,048 1,350
1–15 6,269 345 17–18 4,236 1,715 34–52 12,234 1,350
2–15 8,534 345 17–19 1,939 5,140 35–41 14,204 1,350
3–4 5,339 240 17–20 8,071 1,179 35–52 9,026 1,420
3–15 11,686 240 18–19 1,465 13,170 36–41 15,777 2,770
4–5 6,994 510 19–52 11,321 1,179 36–42 11,186 2,840
4–12 5,887 405 20–23 13,165 1,316 36–43 15,408 2,770
4–15 3,644 240 21–22 47,621 1,420 37–39 66,471 1,420
5–13 6,462 510 22–23 11,391 1,350 37–41 21,295 1,350
6–7 23,987 300 22–49 9,138 1,350 38–39 10,931 1,650
6–8 9,138 400 23–24 41,559 5,540 38–51 17,168 946
7–21 14,885 541 23–25 16,982 1,420 39–51 8,596 1,650
7–32 5,963 410 23–28 8,610 1,350 40–41 11,113 2,770
8–9 45,360 400 23–32 33,255 1,350 41–46 11,509 2,840
8–10 26,541 800 25–26 134,987 1,420 41–47 13,797 1,420
8–32 11,467 400 25–30 11,991 1,420 43–45 34,468 1,350
9–11 20,157 410 27–28 64,753 1,420 44–45 47,128 1,420
9–32 10,012 375 28–29 38,569 1,350 46–47 34,441 1,420

11–32 18,398 375 29–31 284,443 1,350 47–48 14,942 1,420
12–32 4,567 405 29–45 14,534 1,350 48–49 6,998 1,420
13–14 121,410 2,700 30–31 269,973 1,420 49–50 5,943 3,784
13–15 5,094 790 30–43 10,268 1,420 50–51 2,746 5,676
13–23 5,481 2,770 31–52 1,453 400 52–53 1,279 2,840
15–16 8,839 400 33–34 40,429 1,420
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Figure A1. The Belgian grid.
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