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Remanufacturing is emerging as a promising solution for achieving green, profitable businesses. This article
considers a manufacturer that produces new products and also remanufactured versions of the new products
that become available at the end of their life cycle. For such a manufacturer, design decisions at the initial
design stage determine both the current profit from manufacturing and future profit from remanufacturing.
To maximize the total profit, design decisions must carefully consider both ends of product life cycle,
i.e. manufacturing and end-of-life stages. This article proposes a decision-support model for the life-cycle
design using mixed-integer nonlinear programming. With an aim to maximize the total life-cycle profit,
the proposed model searches for an (at least locally) optimal product design (i.e. design specifications
and the selling price) for the new and remanufactured products. It optimizes both the initial design and
design upgrades at the end-of-life stage and also provides corresponding production strategies, including
production quantities and take-back rate. The model is extended to a multi-objective model that maximizes
both economic profit and environmental-impact saving. To illustrate, the developed model is demonstrated
with an example of a desktop computer.

Keywords: remanufacturing; life-cycle design; end-of-life

1. Introduction

As environmental regulations become increasingly stringent and people are more concerned about
environmental issues, manufacturers are faced with the challenge of operating both green and
profitable businesses. Remanufacturing is emerging as a promising solution to meet this challenge.
In remanufacturing, products with a like-new condition are produced using parts retrieved from
used and discarded products (hereinafter called end-of-life products). By utilizing the resources
and value remaining in their end-of-life products, companies can reduce the amount of waste
that must be disposed of. Recently, manufacturers across a wide range of industries have turned
to remanufacturing. Caterpillar, John Deere, Apple, Xerox, HP, and Sony are among the notable
examples. As functional sales (such as leasing) and asset recovery services by manufacturers
increase, remanufacturing is expected to become more popular and prevalent (Sundin and Bras
2005; Zhao et al. 2010).
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1The initial version of the paper was presented in the International Conference on Engineering Design 2013, Seoul, South
Korea.
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2 M. Kwak and H. Kim

Figure 1. Two components of optimal product design for life-cycle profit: initial product design and design upgrade at
the end-of-life stage.

Design is one of the most important considerations for successful remanufacturing (Lund
1984; Kerr and Ryan 2001; Kwak and Kim 2010, 2011). However, for a company which
manufactures and sells both new and remanufactured products, optimizing product design
is not a simple task. Design decisions made at the initial design stage affect both the
profits from initial manufacturing and end-of-life remanufacturing. To maximize the total
profit from the entire life cycle of a product, design decisions must be made by consider-
ing both stages together. Rapid changes in technology and customer preferences complicate
the design decision even more. In a market with such rapid changes, initial product design
determined at the manufacturing stage quickly becomes obsolete and outdated. To attract
customers in the market, remanufactured products may need appropriate part upgrades. There-
fore, product design must be optimized in a way that considers possible part upgrades
at the end-of-life stage (Sand and Gu 2006; Östlin, Sundin, and Björkman 2009; Kwak
and Kim 2013).

This article considers a company that makes and sells new products and also sells remanufac-
tured versions of the new products that become available at the end of their life cycle. To help in
optimal product design for the company, this article proposes a mathematical model using mixed
integer programming. The proposed model identifies the optimal product design and correspond-
ing production strategies that maximize the total life-cycle profit. Here, life-cycle profit denotes
the sum of the profits from initial manufacturing and end-of-life remanufacturing. To be more
specific, the model optimizes the following decisions (Figure 1):

• initial design (both specifications and selling price) and production quantity of the new product
• number of units of used products to take back (or buy back) at the end-of-life stage
• design upgrades and production quantity of the remanufactured product

The rest of the article is organized as follows. Section 2 discusses the relevant literature, followed
by the proposed mathematical model in Section 3. Section 4 illustrates the model with the example
of a desktop computer. Section 5 discusses the extension of the model to a multi-objective model
that considers both life-cycle profit and environmental-impact saving. Section 6 summarizes the
article with future research directions.

2. Literature review

Given the rapid changes in technology and customer preferences, optimal design is a critical
success factor for manufacturers. To compete in the market, manufacturers need to identify optimal
specifications and selling prices for their products. In the engineering design community, such
optimal design has been discussed focusing on new product sales. Design for market systems
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Engineering Optimization 3

(DMS) and decision-based design (DBD) are well-known streams of research to this end. Various
approaches have been proposed to optimize new product sales, including by Hazelrigg (1998),
Wassenaar and Chen (2003), Gu et al. (2002), Kumar, Chen, and Kim (2006), and Frischknecht,
Whitefoot, and Papalambros (2010).

When remanufacturing is involved, design optimization encompasses additional decisions on
part reuse and upgrades at the end-of-life stage. The decisions include: (1) whether to reuse a part or
upgrade; and (2) the new specification of a part when it is to be upgraded. Despite growing interest
in remanufacturing, only a few studies have made progress concerning an optimal design of this
sort that also considers upgrades. Tsubouchi and Takata (2007) presented a model for determining
the optimal timing and content of module-based design upgrades. The model attempted to satisfy
customers’ requirements, while minimizing the environmental load from production. Rachaniotis
and Pappis (2008) proposed a decision-making model for remanufacturing a set of systems, in
which the parts deteriorated at different rates and had different levels of importance for the system.
The model determined which parts should be reused, replaced, upgraded or disposed of in order
to maximize the performance of the overall systems. Chung, Okudan, and Wysk (2010) presented
a dynamic programming model for determining the optimal upgrade plan for an existing product.
Assuming product users as the decision maker, the proposed model identified the timing and
content of upgrades that meet future performance requirements with a minimum cost. Kwak
and Kim (2013) proposed a model for market positioning of a remanufactured product. When
the design of a new product is given, the model optimizes the design and selling price of the
remanufactured product, considering possible upgrades of constituent parts.

One limitation of the previous methods is that design influences on the initial manufacturing and
end-of-life remanufacturing have been considered separately. Product design not only determines
the initial profit from the manufacturing stage, but also affects the future profit at the end-of-
life stage (i.e. remanufacturing). Previous approaches, however, have focused on improving one
only of the stages, but not the stages together. Exceptions can be found in Zhao and Thurston
(2010) and Ma, Kwak, and Kim (2012). They developed a mathematical model to determine an
optimal product design that maximizes the profits from both initial sales and end-of-life recovery.
They showed that the total profit can be maximized when both ends of the product life cycle are
considered at the same time. However, they did not incorporate part upgrades at the end-of-life
stage.

The current design model presented in the next section provides a simultaneous consideration of
profits from both initial manufacturing and end-of-life remanufacturing with optimal part upgrade
decisions. The model can identify optimal designs for two different sets of products—new and
remanufactured—while the identity of the product is maintained. For example, two sets of the same
type of consumer electronics products are designed, in which the details of product specifications
are different for new and remanufactured. The details of the model follow in the next section.

3. Optimal product design for life-cycle profit

This section proposes a mathematical model for optimal product design. Mathematical notations
used in the model are shown in the Nomenclature. Using mixed integer programming, the proposed
model identifies optimal specifications, selling prices, and the corresponding production strategies
for both new and remanufactured products. The goal of the model is to maximize the total life-cycle
profit, i.e. the sum of the profits from initial manufacturing and end-of-life remanufacturing.

The proposed model is based on the following assumptions. First, the decision maker has no
other products in the target market, so there is no risk of cannibalization. Secondly, the product
to be remanufactured has a modular structure, and upgrades are made through part replacement.
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4 M. Kwak and H. Kim

Thirdly, remanufacturing is instantaneous. Remanufacturing operations have a negligible lead
time. Fourthly, all non-reusable and leftover parts are transferred to third party recyclers for
material recovery. Lastly, the decision maker has good knowledge of the required inputs at the
time of applying the model. How to estimate input values is outside the scope of this study.

3.1. Part obsolescence and upgrade decisions

To represent product specifications and technological obsolescence, this study uses the concept
of generational difference (Kwak and Kim 2013). As product technology advances, cutting-edge
parts of a new generation start to appear in the market. In this study, the newer part corresponds
to the greater number of generations, and the cutting-edge part corresponds to the maximum
generation (the latest). Then, the generational difference of a part is the gap between its generation
and the current maximum generation of the cutting-edge part. (For example, a product consisting
of cutting-edge parts only has zero generational differences for each and every part.) Therefore, the
generational difference indicates, in terms of the technology, how old an existing part is compared
with the cutting-edge part.

In the current model, xNi denotes the specification of part i of a new product. It is represented in
terms of the part’s generational difference at the manufacturing stage.As the specification becomes
obsolete over time, the generational difference of part i increases with an annual average rate of μi;
t years later (when the product reaches the end-of-life stage), the generational difference becomes
δi(t), which is equal to floor(xNi + μi · t), i.e. the greatest integer less than or equal to xNi + μi · t.
Given δi(t), the specification of the remanufactured product xRi is defined as a function of δi(t),
i.e. xRi = δi(t) · yi + ui, where yi is the binary decision variable indicating whether part i of the
remanufactured product maintains its original specification (yi = 1) or upgrades its specification
(yi = 0), and ui represents the decision on part upgrading, i.e. the generational difference of part
i when a decision is made to upgrade the part.

Figure 2 describes how decisions on part reuse and upgrading affect the remanufacturing
operation. More specifically, the figure shows which and how many used parts and spare parts
are necessary in remanufacturing, when SR units of end-of-life products are returned for recovery,
and the target production quantity for the remanufactured product is given as βR units. If part i is
determined to be upgraded (yi = 0), no parts are reused in remanufacturing.All SR units of reusable
part i are sold to third party recyclers for material recovery, while βR units of a spare part with
an upgraded specification ui are newly purchased. If part i is determined to maintain its original
specification (yi = 1), the next question is whether the Ri(t) units of reusable part i are sufficient
to meet the production quantity βR. If part i is insufficient in quantity for remanufacturing (i.e.
βR > Ri(t); li = 1), spare parts that are new but having the original specification are purchased for
as many as (βR − Ri(t)); in the meantime, all non-reusable parts (i.e. (SR − Ri(t)) units) are sent to
third party recyclers. In contrast, if there are enough reusable parts (i.e. βR ≤ Ri(t); li = 0), only
βR units are used in remanufacturing. The rest (SR − βR) units, including both the non-reusable
and left-over parts, are processed for material recovery.

3.2. Remanufacturing process

The primary goal of remanufacturing is to retrieve valuable parts from end-of-life products and
use them to produce marketable products. Remanufacturing typically involves two sequential
activities: product take-back and a reprocessing operation. Figure 3 depicts the remanufacturing
process considered in this article and how the process is linked with new product sales.

Product take-back is the process of collecting (buying back) end-of-life products. Since product
take-back determines the quality and quantity of feedstock processed later in the reprocessing

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
Il

lin
oi

s 
at

 U
rb

an
a-

C
ha

m
pa

ig
n]

 a
t 1

2:
55

 0
5 

M
ar

ch
 2

01
4 



Engineering Optimization 5

operation, a key aspect of this activity is to determine how many products should be acquired.
The current model assumes that SR units of end-of-life products, or an α fraction of the total new
product sales βN , are taken back for remanufacturing at the end-of-life stage. Here, the take-back
rate α is one of the decision variables to optimize.

After product take-back, the collected products pass through a reprocessing operation. In the
first stage of reprocessing, products are disassembled into a set of parts, and the resultant parts start
their recovery as independent units. Two recovery options are considered for each part, i.e. reuse
for product remanufacturing or material recycling. An important point is that not all resulting
parts are reusable, and only reusable parts are qualified for reuse. In addition, as discussed in
Section 3.1, upgrading decisions affect which and how many parts are reused. For the parts to be
reused, reconditioning (e.g. cleaning, lubricating) is conducted as needed. In the last stage, parts
from the end-of-life products are reassembled into βR units of remanufactured products. Again,
upgrade decisions affect the type and number of new parts to purchase, as shown in Figure 3.
When there is a shortage of parts, new spare parts can be externally procured.

Figure 2. Possible decisions on part upgrades and their implications in remanufacturing.

Figure 3. Remanufacturing process and product/part flow volumes.
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6 M. Kwak and H. Kim

3.3. Mathematical model

The optimization model is formulated in Equations (1)–(6). The objective of this model
(Equation 1) is to maximize the total life-cycle profit, where the life-cycle profit is the sum
of two components: the profit from selling new products, �N , and the profit from selling remanu-
factured products, �R. The profit from remanufacturing is discounted with an annual interest rate
of θ .

maximize �N + (1 + θ)−t · �R

with respect to xNi, pN , βN , xRi, pR, βR, α, yi, li, ui, δi(t)

where

�N = pN · βN − (Cpart
N + Cmarket

N )

�R = pR · βR + M recycle
R − (Ctakeback

R + Cpart
R + Crecond

R + Cmarket
R )

Cpart
N = βN ·

∑
i∈I

V new
i (xNi)

Cmarket
N = cmarket · βN

Ctakeback
R = ctakeback · SR

Cpart
R =

∑
i∈I

[(1 − yi) · βR + yi · li · (βR − Rt(t))] · V new
i (xRi)

Crecond
R =

∑
i∈I

[yi · li · Ri(t) + yi · (1 − li) · βR] · crecond
i

Cmarket
R = cmarket · βR

M recycle
R =

∑
i∈I

[SR − yi · li · Ri(t) − yi · (1 − li) · βR] · V matl
i (xRi)

SR = α · βN (1)

The profit from new product sales consists of three parts: the revenue from selling βN units of new
products (i.e. pN · βN ), the cost of purchasing (or manufacturing) parts for making βN products
(i.e. Cpart

N ), and the cost of assembling and distributing βN products (i.e. Cmarket
N ). The profit from

remanufacturing consists of six components: the revenue from selling βR units of remanufactured
products (i.e. pR · βR), the revenue from selling non-reusable or left-over parts to third party
recyclers (i.e. M recycle

R ), the cost of taking back SR units of end-of-life products (i.e. Ctakeback
R ), the

cost of acquiring parts for making βR products (i.e. Cpart
R ), the cost of reconditioning reusable parts

(i.e. Crecond
R ), and the cost of assembling and distributing βR products (i.e. Cmarket

R ). As described
in Section 3.2, the supply of end-of-life products SR is determined by the initial sales βN and the
take-back rate α.

Equations (2)–(6) formulate the constraints of the model. Equation (2) calculates the demand
for the new and remanufactured products, i.e. DN and DR. Product specifications, xNi and xRi, and
selling prices, pN and pR, determine the size of the demand. The demand function can be defined
through well-known demand modelling techniques, such as discrete choice analysis (Ben-Akiva
and Lerman 1985; Wassenaar and Chen 2003) and conjoint analysis (Green, Krieger, and Wind
2001). This model also assumes that each part and the selling price have critical levels for their
values, i.e. δmax

Ni , δmax
Ri , pmax

N , pmax
R . In general, customers prefer lower generational differences and

price. The critical levels represent the maximum generational differences and price that customers
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Engineering Optimization 7

are willing to consider for purchasing the product. For example, if any part of a product has a
generational difference greater than its critical value, then customers will not choose the product
at all. Equation (2) prevents the generational differences and selling price from exceeding their
critical values.

DN =fN (xNi, pN ); DR = fR(xRi, pR)

xNi ≤δmax
Ni ; xRi ≤ δmax

Ri ; pN ≤ pmax
N ; pR ≤ pmax

R

(2)

Equation (3) constrains the production quantity (or initial sales) βN so as not to exceed the
demand size DN . Unlike new production, remanufacturing is possible only when there exist both
a supply of end-of-life products and demand for remanufactured products (Guide, Teunter, and
Van Wassenhove 2003; Umeda, Kondoh, and Sugino 2006). Thus, Equation (3) also constrains
the production quantity βR so as not to exceed the supply SR or demand DR.

βN ≤ DN ; βR ≤ DR; βR ≤ SR (3)

Equation (4) formulates decisions for part upgrades at the end-of-life stage for each and every part
i(i ∈ I). The variable xRi denotes the generational difference of part i which is to be included in the
remanufactured product. It is determined by two decision variables, yi and ui. When yi is 0, a part
upgrade is conducted, and the current part with δi(t) is replaced by an upgraded part with ui. When
yi is 1, part i is reused, and at the same time, ui becomes 0. Accordingly, xRi equals δi(t), which is
the generational difference of the original part i at the end-of-life stage, i.e. floor(xNi + μi·t). The
floor function is linearized in Equation (4) using a positive number ε less than 1 (e.g. 0.1 in this
study).

xRi = δi(t) · yi + ui ∀i

δi(t) ≤ xNi + μi · t ∀i

δi(t) ≥ (xNi + μi · t) − 1 + ε ∀i∑
i∈I

yi · ui = 0

(4)

Equation (5) considers whether the available quantity of reusable part i (i.e. Ri(t)) is sufficient to
produce βR units of the remanufactured product. The available quantity Ri(t) depends on ri(t),
that is, the reusability of part i of the end-of-life product at year t. If part i is insufficient in quantity
(i.e. βR > Ri(t)), the indicator variable li becomes 1; in Equation (1), this implies that new parts
as many as (βR − Ri(t)) are purchased. Finally, Equation (6) represents variable conditions.

Ri(t) = ri(t) · SR ∀i

βR − Ri(t) ≤ M · li ∀i (5)

βR − Ri(t) ≥ M · (li − 1) ∀i

βN , βR, xNi, xRi, ui, δi(t) ∈ non-negative integer; yi, li ∈ {0, 1} ∀i (6)

0 ≤ α ≤ 1; pN ≥ 0; pR ≥ 0

4. Case illustration

In this section, the proposed model is illustrated through an example using desktop computers.
Suppose that there is an original equipment manufacturer conducting both manufacturing and
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8 M. Kwak and H. Kim

Table 1. Target market information.

New market Part worth Critical value Competitor 1 Competitor 2 Competitor 3

CPU 0.125 (2, 3) 0 0 2
RAM 0.125 (2, 3) 0 1 2
Motherboard 0.100 (2, 3) 0 1 2
Hard drive 0.050 (3, 5) 0 1 2
Graphic card 0.025 (3, 5) 0 1 2
Optical drive 0.050 (3, 3) 0 0 1
Chassis 0.025 (1, 2) 0 0 0
Selling price 0.500 ($1000, $500) ($1000, $500) ($600, $300) ($350, $150)
Market share (0.3279, 0.1771) (0.4906, 0.4861) (0.1815, 0.3367)

Note: If a cell includes two numbers, the first is of the present new-product market and the second is of the future remanufactured-
product market.

remanufacturing. It is expected that all initial sales will become available for buy-back after four
years of use (i.e. t = 4), and the company is planning to conduct remanufacturing for the end-of-
life products. To maximize the total life-cycle profit from manufacturing and remanufacturing, the
company aims to optimize their product design. To be specific, there are nine product attributes that
the company wants to optimize (Table 1), including the central processing unit (CPU), random-
access memory (RAM), chassis (case, fan and power supply) and selling price.

The demand for a product is determined by its design (specifications and the selling price) as
well as competing product designs. Table 1 shows the target market under consideration in this
study. When two numbers are shown in a cell, the first is of the current new-product market and
the second is of the future remanufactured-product market.

In the new-product market, there exist three competing products sold at the prices of $1000, $600
and $350. The current market share indicates that customers in the market like the product with
medium specifications most (49%) and the highest specifications next (33%). Given the market
condition, the expected demand for a new product DN can be calculated using a conditional
multinomial logit choice model, as shown in Equation (7). Here, QN denotes the new-product
market size, and UN and Uj denote the customer utility for the new and the competing product j,
respectively. In the equation, k is a scaling parameter; as k → 0, all choices have the same demand
(Jiao and Zhang 2005). In this study, k was calibrated on the current market share in Table 1 and
defined as 6.45.

The utility for the new product UN is defined as a linear weighted sum of its generational
differences xNi and the selling price pN (Equation 8). For the calculation, xNi and pN are normalized
to lie between 0 and 1. The ‘Part worth’ column in Table 1 shows the weight (or part-worth utility)
assumed for each normalized xNi and pN , i.e. wNi and wNp. The ‘Critical value’ column provides
the critical values for xNi and pN , i.e. δmax

Ni and pmax
N . As described in Section 3, the critical values

are the maximum generational differences and selling price that customers are willing to accept
for a product. In the current study, as an example, the customers of the new-product market will
not buy a product if the CPU is more than two generations old.

DN = QN · exp(kUN )

exp(kUN ) + ∑
j∈J exp(kUj)

(7)

UN =
∑
i∈I

wNix
′
Ni + wNpp′

N where x′
Ni = 1 − xNi/δ

max
Ni ; p′

N = 1 − pN/pmax
N (8)

Equation (9) shows the final demand function obtained for the new product. Similarly, the
demand function for the remanufactured product is obtained, where QR denotes the size of the
remanufactured-product market. For simplicity, it was assumed that the part-worth utility does not
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Engineering Optimization 9

Table 2. Parameter settings (t = 4).

Vnew
i (0) ($) φi μi Vmatl

i ($) ri (t) crecond
i ($)

CPU 175 0.6733 0.67 5 0.7745 1
RAM 50 0.8378 0.50 5 0.7745 1
Motherboard 150 0.6733 0.67 5 0.5999 1
Hard drive 120 0.1717 1.00 4.5 0.2787 1
Graphic card 100 0.2883 1.00 4.5 0.4646 1
Optical drive 80 0.8088 0.40 3 0.0466 1
Chassis 75 0.1500 0.20 3 0.4646 3

differ between the new- and the remanufactured-product markets. Also, k = 9.18 was used for the
demand modelling. In this study, QN and QR are assumed to be 50,000 and 10,000, respectively.

DN = QN · (1 + e−6.45·(UN −0.67))−1

DR = QR · (1 + e−9.18·(UR−0.69))−1
(9)

Table 2 provides assumptions on remanufacturing costs and revenues. In Table 2, V new
i (0) repre-

sents the market value of the newest cutting-edge part. In Equation (10), it is used for calculating
the cost of purchasing a new part. Adopting the model by Kwak and Kim (2011), the equation
assumes that a part’s market value depreciates exponentially with its generational difference. The
constant parameter φi reflects a part’s own speed of value depreciation. The values of φi used in
this study are given in Table 2.

V new
i (xi) = V new

i (0) · e−φi·xi (10)

In Table 2, V matl
i shows the revenue from selling a part to a third party recycler. For simplicity, it is

assumed to be the same regardless of the specification. Other processing costs, ctakeback and cmarket,
are assumed to be $58 ($28 for collection; $30 for disassembly, inspection and sorting) and $35,
respectively (Bhuie et al. 2004; Microsoft 2008). Finally, the annual interest rate is assumed to
be 3% (i.e. θ = 0.03).

The final optimization model is given in Appendix 1 (see Equation A1). With the initial starting
point set as yi = 1, pN = 1000, pR = 500, α = 1, βN = 50, 000, βR = 10, 000, and all others being
zero, the optimization model was solved using the Large-Scale Generalized Reduced Gradient
(GRG) Solver of Risk Solver Platform (version 11.0). A personal computer with Intel Core i5
processor (2.53 GHz) and 4 GB RAM was used, and the total solution time was 73 seconds.
Table 3 shows the optimization result. The optimal solution satisfied the optimality conditions of
the Large-Scale GRG Solver, which means that it is at least a locally optimal solution. The results
can be summarized as follows.

• The optimal initial design is to include a cutting-edge CPU, RAM, motherboard, hard drive
and chassis, a three-generation-old graphic card and a one-generation-old optical drive. The
optimal selling price for the new product is $999.99, and the corresponding market share is
expected to be 20% (or 10,020 units). The total profit expected from the manufacturing stage
is approximately $3.18 million.

• Pursuing remanufacturing can be profitable; it can increase the life-cycle profit by $72,000. To
take advantage of the profit opportunity, the company should take back 1489 units of end-of-life
products, which is 14.9% of initial sales. Using the end-of-life products, the company should
produce 692 units of remanufactured products. While all other parts are reused in remanufac-
turing, the RAM and graphic card should be upgraded from two- and seven-generation-old
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10 M. Kwak and H. Kim

Table 3. Optimal design of new and remanufactured products (t = 4).

New Remanufactured

CPU 0 2
RAM 0 0 (upgraded)
Motherboard 0 2
Hard drive 0 4
Graphic card 3 5 (upgraded)
Optical drive 1 2
Chassis 0 0
Price $999.99 $346.24
Production quantity (take-back amount) 10,020 units 692 units (1489 units, α = 14.86%)
Market share 20.04% 6.92%
Total profit (present value) $3,250,921 ($3,178,884 from new, $72,047 from remanufactured)

Table 4. Optimal design of new and remanufactured products under a take-back law enforcing a 75% take-back
(t = 4).

New Remanufactured

CPU 0 2
RAM 0 0 (upgraded)
Motherboard 0 2
Hard drive 0 4
Graphic card 3 5 (upgraded)
Optical drive 1 2
Chassis 0 0
Price $999.99 $272.91
Production quantity (take-back amount) 10,020 units 1272 units (7515 units, α = 75%)
Market share 20.04% 12.72%
Total profit (present value) $3,136,747 ($3,178,884 from new, −$42,127 from remanufactured)

parts to cutting-edge and five-generation-old parts, respectively. The optimal selling price of
the remanufactured product is $346, and the expected market share is approximately 7%.

Table 4 considers another scenario where there is a take-back law enforcing a 75% collection rate
for the initial sales, i.e. α ≥ 0.75.With the additional constraint, the optimization model was solved
using the same setting as the previous case with no take-back law. The optimal solution in Table 4
indicates that such legislation would not alter the optimal initial design or design upgrades plan
in Table 3 but facilitate more remanufacturing by reducing the selling price of the remanufactured
product. Compared with Table 3, the selling price of the remanufactured product is reduced from
$346 to $273, which increases the expected market share by 5.8%. Conducting remanufacturing,
however, is not profitable; rather, it costs approximately $42,100 (in present value) owing to the
increased amount of take-back (from 1489 to 7515 units). Nevertheless, remanufacturing is still
recommendable if one considers that the end-of-life treatment would have cost approximately
$210,400 (= 7515 units ×take-back cost $28/unit), i.e. $187,000 in present value, in case of no
remanufacturing and recycling material only.

5. Discussion: Extension to design for green profit

In previous sections, the proposed model considers only the economic perspective of life-cycle
design. This section discusses an extension of the model to a bi-objective model that has two

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
Il

lin
oi

s 
at

 U
rb

an
a-

C
ha

m
pa

ig
n]

 a
t 1

2:
55

 0
5 

M
ar

ch
 2

01
4 



Engineering Optimization 11

conflicting objectives: to maximize the life-cycle profit (i.e. f1) and to maximize the environmental-
impact saving (i.e. f2).

maximize f2 : Etakeback + Ereman

where

Etakeback = edisposal · α · βN

−
(

etakeback · SR +
∑
i∈I

[SR − yi · li · Ri(t) − yi · (1 − li) · βR] · ematl
i (xRi)

)

Ereman =
∑
i∈I

enew
i (xRi) · βR −

(∑
i∈I [(1 − yi) · βR + yi · li · (βR − Rt(t))] · enew

i (xRi)

+ ∑
i∈I [yi · li · Ri(t) + yi · (1 − li) · βR] · erecond

i

)
(11)

Environmental-impact saving is the concept proposed in Kwak, Koritz, and Kim (2013). It indi-
cates ‘how much environmental impact can be avoided by producing remanufactured products, as
compared to the case when only new products are produced’.Adopting the concept of environmen-
tal saving, the second objective can be formulated as shown in Equation (11). The environmental
advantage of remanufacturing originates from two sources. First, by taking back end-of-life prod-
ucts, companies can reduce the amount of waste that must be disposed of. Secondly, by utilizing
the parts from the end-of-life products, companies can produce products in ‘same-as-new’ condi-
tion using reduced resources and energy. Etakeback and Ereman in Equation (11) represent the impact
saving from the two sources, respectively.

In this article, the ε-constraint approach (Andersson 2000; Mavrotas 2009) was used to consider
the two objectives simultaneously. In the ε-constraint approach, one of the objective functions
is optimized using the other objective functions as constraints. For instance, the bi-objective
problem in Equation (12) can be reformulated as Equation (13), where the second objective f2 is
incorporated into the constraint part of the model and bounded from below by ε. (It should be
noted that the solution space in Equations 12 and 13 is limited to f1 ≥ 0: the decision maker in
this article is a profit-seeking company.)

max
x

[f1(x), f2(x)]
subject to

gl(x) ≤ 0 l = 1, 2, . . . , L (12)

hm(x) = 0 m = 1, 2, . . . , M

f1 ≥ 0

max
x

f1(x)

subject to

gl(x) ≤ 0 l = 1, 2, . . . , L

hm(x) = 0 m = 1, 2, . . . , M

f1 ≥ 0 (13)

f2(x) ≥ ε

ε = f2(x1
∗) + (f2(x2

∗) − f2(x1
∗)) · η

0 ≤ η ≤ 1
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12 M. Kwak and H. Kim

Table 5. Parameter settings for environmental consideration (t = 4).

enew
i (kg CO2e) erecond

i (kg CO2e) ematl
i (kg CO2e)

CPU 5.92 1.18 0.0051
RAM 7.59 1.52 0.0015
Motherboard 169.00 33.80 0.0044
Hard drive 12.30 2.46 0.0035
Graphic card 50.20 10.04 0.0029
Optical drive 17.10 3.42 0.0023
Chassis 56.20 11.24 0.0022
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Figure 4. Efficient frontier of the bi-objective optimization. The grey area indicates the opportunities for green profit,
compared with the case of selling the new product only.

The lower bound ε can be set by a two-step approach. First, by solving Equation (12) with
only one objective at a time (i.e. first, maximizing the life-cycle profit, and next, maximizing
the environmental-impact saving), calculate the two extremes of the efficient frontier (i.e. a set of
Pareto optimal solutions); this gives the range of f2, i.e. the lower bound f2(x∗

1) and the upper bound
f2(x∗

2). Next, apply a value of η between 0 and 1. By progressively increasing the η value, different
points on the efficient frontier can be sampled. If η = 0, the resulting optimum of Equation (13)
is the same as the independent maximum of f1. If η = 1, the resulting optimum is the same as the
independent maximum of f2.

To demonstrate, the developed bi-objective model is applied to the desktop case.As the measure
for the environmental impact, global warming potential (GWP), which quantifies the greenhouse
gas emissions to air, was used. The unit of GWP is kilograms of carbon dioxide equivalent
(hereinafter kg CO2e). The environmental impact parameters used for the optimization are shown
in Table 5. In addition, edisposal and etakeback are assumed to be 1.488 and 0.658, respectively.
Life-cycle assessment (LCA) was conducted to estimate the impact parameters using SimaPro
7.3 and the ecoinvent database. More details on LCA and its applications can be found in Keoleian
(1993), Guinée et al. (2011), Rebitzer et al. (2004) and Goedkoop and Spriensma (2000).

Figure 4 and Table 6 show the optimization results. By progressively changing the η value
from 0 to 1 with 0.1 increment, a total 11 points on the efficient frontier is sampled. Here, η = 0
represents the single-objective problem of maximizing the life-cycle profit, which returns the
optimal solution identical to Table 3. As η increases, more environmental consideration is made,
and η = 1 represents another single-objective problem of maximizing the environmental saving.
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Engineering Optimization 13

Table 6. Optimal design of new and remanufactured (Reman.) products (t = 4) with two objectives.

New Reman. New Reman. New Reman.

η = 0 η = 0.2 η = 0.4

CPU 0 2 0 2 0 2
RAM 0 0 (upgraded) 0 0 (upgraded) 0 0 (upgraded)
Motherboard 0 2 0 2 0 2
Hard drive 0 4 0 4 0 4
Graphic card 3 5 (upgraded) 3 5 (upgraded) 3 5 (upgraded)
Optical drive 1 2 1 2 1 2
Chassis 0 0 0 0 0 0
Price $999.99 $346.24 $999.99 $195.22 $999.99 $112.24
Production quantity 10,020 units 692 units 10,020 units 2,292 units 10,020 units 3,891 units
(take-back amount) (1,489 units) (4,933 units) (8,380 units)
Market share 20.04% 6.92% 20.04% 22.92% 20.04% 38.91%
Total profit $3,250,921 $3,109,977 $2,774,972
(present value) ($3,178,874, $72,047) ($3,178,874, −$68,898) ($3,178,884, −$403,903)
Total environmental saving 134,196kg CO2e 444,475kg CO2e 754,582kg CO2e

η = 0.6 η = 0.8 η = 1

CPU 0 2 0 2 0 1 (upgraded)
RAM 0 0 (upgraded) 0 0 (upgraded) 0 0 (upgraded)
Motherboard 0 2 0 2 0 2
Hard drive 0 4 0 4 0 4
Graphic card 1 5 1 5 1 5
Optical drive 1 2 1 2 1 1 (upgraded)
Chassis 0 0 0 0 0 0
Price $999.99 $82.80 $963.79 $3.81 $852.90 $0.06
Production quantity 10,909 units 4,549 units 11,937 units 6,328 units 15,479 units 7,529 units
(take-back amount) (9,790 units) (11,937 units) (15,479 units)
Market share 21.82% 45.49% 23.87% 63.28% 30.96% 75.29%
Total profit $2,584,829 $1,756,122 $118.03
(present value) ($3,102,546, −$517,717) ($2,962,818, −$1,206,697) ($2,125,497, −$2,125,379)
Total environmental saving 1,064,863 kg CO2e 1,407,720 kg CO2e 1,685,161 kg CO2e

Among the 11 points, Table 6 shows detailed results for six points. The results can be summarized
as follows.

• Until η = 0.4, the optimal initial designs are the same, as explained in Table 3. The desktop
should include a cutting-edge CPU, RAM, motherboard, hard drive and chassis, a three-
generation-old graphic card and a one-generation-old optical drive. The optimal selling price
for the new product is $999.99, and the corresponding market share is expected to be 20%
(or 10,020 units). At the end-of-life stage, the RAM and graphic card should be upgraded
to cutting-edge and five-generation-old parts, respectively, while all other parts are reused in
remanufacturing. As the η value progressively increases, changes are observed in the optimal
take-back rate, remanufacturing quantity and selling price for the remanufactured product.
When the company aims to maximize its profit only (i.e. η = 0), the optimal take-back rate
and remanufacturing quantity are 14.9% and 692 units, respectively; the corresponding selling
price for the remanufactured product is $346. However, as more environmental consideration is
made, more remanufacturing is pursued. When η = 0.4, the optimal take-back rate and reman-
ufacturing quantity increase to 83.6% and 3891 units while the optimal selling price decreases
to $112. Even though the total life-cycle profit decreases by 14.6% (from 3.25 to 2.77 million
dollars), a huge environmental saving is observed; the total saving increases from 134 to 755
tonnes of CO2e by 462.3%.
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14 M. Kwak and H. Kim

• If η = 0.6, more weight is given to the environmental saving, and the optimal initial design and
upgrade plan are changed to enable more remanufacturing. To be more specific, ‘overdesign’of
graphic card is chosen at the initial design stage, and the new product includes a one-generation-
old graphic card instead of a three-generation-old one. Accordingly, no upgrade is needed at
the end-of-life stage, which enables the cost of purchasing spare parts to be reduced.

• When η = 0.8, the selling price for the new product decreases to $964, and the new product sales
increase accordingly. As more products are released to the market, more end-of-life products
are taken back and allowed to meet the increasing demand for the remanufactured product.

• If the company aims to maximize its environmental-impact saving (η = 1), it should increase
the remanufacturing quantity even more. To secure enough reusable parts, more end-of-life
products have to be returned, which requires increase new product sales by offering a cheaper
price (i.e. $853). To increase the market share, the upgrade plan for the remanufactured product
also changes. More parts upgrading is conducted, and the selling price for the remanufactured
product decreases almost to zero. Consequently, approximately 7500 units of the remanufac-
tured product are produced, and the total environmental-impact saving reaches 1685 tonnes of
CO2e.

Figure 4 plots and compares different points on the efficient frontier. As explained in Section 4,
if the company sells only the new product and no remanufacturing is conducted, the total life-
cycle profit is expected to be approximately 3 million dollars in present value (i.e. $3,178,874 –
$187,000 = 2,991,936). Given the case as the reference point, the grey area in Figure 4 represents
the opportunities where the company can achieve a ‘green profit’ (Kwak 2012). The solutions in
the grey area show that the company can actually make a green profit with the optimal life-cycle
design that considers both initial manufacturing and end-of-life remanufacturing simultaneously.

6. Conclusion

Product design determines both the current profit from manufacturing and the future profit from
remanufacturing. To maximize the total life-cycle profit, design decisions must be carefully made
considering both stages together. To help in such design for life-cycle profit, this article proposed
a nonlinear mixed integer programming model. Considering trends in product obsolescence and
customer preferences, the model optimizes both the initial design and design upgrades at the end-
of-life stage and also provides corresponding production strategies. The model and its potential
applications are illustrated with an example of a desktop computer. Its extension to a model for
green-profit maximization is also discussed and demonstrated.

The proposed optimization model can serve as a useful tool for life-cycle thinking in product
design, especially in the concept design stage where design specifications and abstract embodiment
of a product are determined. Moreover, the model provides essential information for configuration
and detail design stages. The model helps designers to identify which parts are expected to be
reused or upgraded at the end-of-life stage. Understanding future paths of each part is important in
elaborating product design, since parts for (reuse in) remanufacturing and parts for recycling have
different design concerns, in terms of, for example, compatibility with (physically or functionally)
adjacent parts, ease of assembly and disassembly, security of technology and the protection of
intellectual property, and liability for improper disposal. By providing estimates for future paths of
parts inside, the proposed model can help to elaborate product design from a life-cycle perspective.

In the future, the model should be improved to incorporate market trend estimation. The inputs
needed for the proposed model (e.g. customer preference trend, reusability of parts decreasing
over time and part market value trend) may bring challenges to prediction. Although such future
prediction was beyond the scope of this study, a prediction model needs to be developed in
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Engineering Optimization 15

the future. Predictive data mining and time-series analyses (e.g. Tucker and Kim 2011; Ma,
Kwak, and Kim 2012) may provide a promising solution to this challenge. Another potentially
productive line of research would be to improve the current model for uncertainty consideration.
Uncertainty is an important aspect in design for life cycle because many parameters are stochastic
and uncontrollable in reality. Future work should include the development of a stochastic model
that can deal effectively with such uncertainties and provide a robust design solution. The mixed
integer programming model proposed in this article is simple, but it is one of the first attempts to
integrate design optimization of new and remanufactured products and provides a great foundation
for a variety of studies in the future.

Nomenclature

i Index for part; i ∈ I
N , R Index for the new (= N) and the remanufactured (= R) products, respectively
�N , �R Profit from selling the new and the remanufactured products, respectively
xNi, xRi Specification of part i of the new and the remanufactured products, respectively
pN , pR Selling price of the new and the remanufactured products, respectively
βN , βR Production quantity of the new and the remanufactured products, respectively
DN , DR Demand size (in units) for the new and the remanufactured products, respectively
t Product end-of-life year; time (in years) when the product returns for remanufacturing
α Take-back rate at year t
SR Supply of the end-of-life product (in units) at year t
yi Binary variable indicating whether part i of the remanufactured product maintains its original

specification (yi = 1) or upgrades its specification (yi = 0)
δi (t) Generational difference of part i of the end-of-life product at year t
ui Generational difference of part i being newly decided when the part i is to be upgraded
li Binary decision variable indicating whether part i needs new part purchase (= 1) or not (= 0)
Ri (t) Number of units of reusable part i available for remanufacturing at year t
ri (t) Reusability of part i of the end-of-life product at year t
μi Average frequency per year in which a successive generation of part i newly released
Cpart

N , Cpart
R Total cost of purchasing (or manufacturing) parts for the new and the remanufactured products,

respectively
Cmarket

N , Cmarket
R Total cost of assembling and distributing the new and the remanufactured products, respectively

Ctakeback
R , Crecond

R Total cost of take-back and reconditioning, respectively
Vnew

i (xi) Market value of purchasing a new part i when the part’s specification is xi

Vmatl
i (xi) Market value of recycling a used part i when the part’s specification is xi

Mrecycle
R Total revenue from recycling (i.e. material recovery)

ctakeback Unit cost of taking back (buying back) the end-of-life product at year t
crecond

i Unit cost of reconditioning operations for a reusable part i
cmarket Unit cost of assembling and distributing a product
Etakeback Environmental-impact saving from taking back α · βN units of the end-of-life product
Ereman Environmental-impact saving from producing βR units of the remanufactured product
edisposal, etakeback Unit environmental impact of discarding and taking back the end-of-life product
enew

i (xi) Unit environmental impact of purchasing a new part i when the part’s specification is xi

erecond
i (xi) Unit environmental impact of reconditioning a used part i when the part’s specification is xi

ematl
i (xi) Unit environmental impact of recycling a used part i when the part’s specification is xi

QN , QR Market size (in units) for the new and the remanufactured products, respectively
M Big M; a very large positive number
θ Annual interest rate
δmax

Ni , δmax
Ri Maximum value that the generational difference of part i can have for the new and the

remanufactured products, respectively
pmax

N , pmax
R Maximum selling price that customers are willing to consider for purchasing the new and the

remanufactured products, respectively
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Appendix 1

maximize �N + (1 + θ)−t · �R

with respect to xNi, pN , βN , xRi, pR, βR, α, yi, li, ui, δi(t)

where

�N = pN · βN − (Cpart
N + Cmarket

N )

�R = pR · βR + Mrecycle
R − (Ctakeback

R + Cpart
R + Crecond

R + Cmarket
R )

Cpart
N = βN ·

∑
i∈I

Vnew
i (xNi)

Cmarket
N = cmarket · βN

Ctakeback
R = ctakeback · SR

Cpart
R =

∑
i∈I

[(1 − yi) · βR + yi · li · (βR − Rt(t))] · Vnew
i (xRi)

Crecond
R =

∑
i∈I

[yi · li · Ri(t) + yi · (1 − li) · βR] · crecond
i

Cmarket
R = cmarket · βR

Mrecycle
R =

∑
i∈I

[SR − yi · li · Ri(t) − yi · (1 − li) · βR] · Vmatl
i (xRi)

SR = α · βN

subject to

DN = QN · (1 + e−6.45·(UN −0.67))−1 (A1)

DR = QR · (1 + e−9.18·(UR−0.69))−1

UN =
∑
i∈I

[wNi · (1 − xNi/δ
max
Ni ) + wNp · (1 − pN/pmax

N )]

UR =
∑
i∈I

[wRi · (1 − xRi/δ
max
Ri ) + wRp · (1 − pR/pmax

R )]

βN ≤ DN ; βR ≤ DR; βR ≤ SR

xRi = δi(t) · yi + ui ∀i

δi(t) ≤ xNi + μi · t ∀i
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δi(t) ≥ (xNi + μi · t) − 1 + ε ∀i∑
i∈I

yi · ui = 0

Ri(t) = ri(t) · SR ∀i

βR − Ri(t) ≤ M · li ∀i

βR − Ri(t) ≥ M · (li − 1) ∀i

xNi ≤ δmax
Ni ; xRi ≤ δmax

Ri ; 0 ≤ pN ≤ pmax
N ; 0 ≤ pR ≤ pmax

R

βN , βR, xNi, xRi, ui ∈ non-negative integer

yi, li ∈ {0, 1} ∀i

0 ≤ α ≤ 1
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