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As awareness of environmental issues increases, the pressures
from the public and policy makers have forced original equipment
manufacturers (OEMs) to consider remanufacturing as the key
product design option. In order to make the remanufacturing
operations more profitable, forecasting product returns is critical
due to the uncertainty in quantity and timing. This paper proposes
a predictive model selection algorithm to deal with the uncer-
tainty by identifying a better predictive model. Unlike other major
approaches in literature such as distributed lag models or DLMs,
the predictive model selection algorithm focuses on the predictive
power over new or future returns and extends the set of candidate
models. The case study of reusable bottles shows that the pro-
posed algorithm can find a better predictive model than the DLM.
[DOI: 10.1115/1.4033086]
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1 Introduction and Background

Wealth of data is being generated by the users, OEMs, and mar-
kets throughout the life cycle of product systems: prelife (product
planning and manufacturing), usage, and end-of-life (remanufac-
turing and disposal) stages. For a successful remanufacturing at
the end-of-life stage, various sources of uncertainty (product
returns, life cycle length, condition, etc.) should be properly
addressed. Among them, the quantity and timing of product
returns are perceived as key information in remanufacturing oper-
ations [1–3]. The goal of this paper is to present a method to
improve the predictive power of existing return forecasting
systems.

1.1 Remanufacturing. Remanufacturing is the process that
restores used products to a like-new condition and returns them to
customers. As remanufacturing reutilizes the materials, parts, or
components with the value in original products, it can be a profita-
ble and environmentally friendly option.

From the perspective of supply chain management, remanufac-
turing is also associated with reverse logistics or closed-loop
supply chains. Generally, closed-loop supply chains are uncontrol-
lable due to the uncertainties in quantity, timing, and condition of
returned products [3]. Clottey et al. [2] introduced an example of
closed-loop supply chains when an OEM is a contract remanufac-
turer as shown in Fig. 1. Based on the contractual agreement, the

OEM should satisfy the monthly orders (Dt) of the contractors.
The primary source of remanufacturing is cores (Yt

¼ fy1;…; ytg), which is remanufacturable returned products.
Other sources include the volume of cores from inventory (It�1),
core brokers (At), and other manufacturers (Mt). Depending on the
accuracy of the predicted volume of cores (Ŷ t), either more cores
are needed (additional acquisition cost) or there are redundant
cores (additional inventory cost).

1.2 Forecasting Product Returns. Forecasting product
returns is defined as the prediction of the quantity and timing of
product returns or cores, which minimizes the additional costs in
remanufacturing. Simple and naive approaches include either
using the proportion of returns to sales with a known life cycle
length [1] or limiting to the special market environments, such as
take-back programs [4] or lease contracts [5]. Various advanced
approaches were proposed such as causal analysis, simulation/
soft-computing, and statistical methods [3]. Among them, the sta-
tistical methods are the most popular approach and the main focus
of this paper.

Table 1 summarizes the important studies in the statistical
methods, especially based on a DLM. All of the studies showed
that the key to forecasting returns was the relationship between
returns and sales. Therefore, returns could be explained with dis-
tributed impacts of previous sales (delay function). However, Goh
and Varaprasad [6] and Toktay et al. [1,7] did not conduct predic-
tion tests after building DLMs. Clottey et al. [2] and Clottey and
Benton [8] compared different DLMs using simulated data but did
not consider other models discussed in this paper.

1.3 Predictive Modeling of Product Returns. When the his-
torical data of returns and sales are available, the DLMs in Table
1 are useful to explain the causal relationships between returns
and sales. However, the predictive modeling perspective of fore-
casting product returns remains widely unexplored.

Shmueli [9] provided an interesting discussion on the differen-
ces between explanatory modeling and predictive modeling.
Explanatory modeling is “the use of statistical models for testing
causal explanations,” while predictive modeling is “the process of
applying a statistical model or data mining algorithm to data for
the purpose of predicting new or future observations” [9]. The key
features are summarized as follows: First, R2 values indicate the
explanatory power (explanatory), while the cross-validation pro-
cess or holdout method is for the predictive power (predictive).
Second, for model selection Bayesian information criterion is to
measure the goodness-of-fit (explanatory), while Akaike informa-
tion criterion (AIC) is suited for predictive accuracy (predictive).
Third, for predictive purposes multicollinearity will not affect the
performance of predictive models (predictive). Fourth, autoregres-
sive integrated moving average (ARIMA)-type models are not
suitable for causal explanations, but for prediction (predictive).
The proposed algorithm in this paper reflects these points to build
a predictive model.

Table 2 shows the position of this paper with regards to the lit-
erature. The majority of studies were based on the DLM (bivariate
model), which related returns to previous sales. Traditional uni-
variate models (ARIMA and exponential smoothing) were
criticized and not used by researchers since the models could not
utilize the information of past sales [2,3,10]. In the proposed algo-
rithm, both univariate and bivariate models will be explored along
with their mixed components to improve the prediction accuracy.

2 Methodology

The additional cost of the closed-loop supply chain in Fig. 1
can be either coðŶ t � YtÞ or cuðYt � Ŷ tÞ, where co is the cost coef-
ficient of overestimation, and cu is the cost coefficient of underes-
timation. In order to minimize the cost (when the cost coefficients
are not considered), predictive models for Ŷ t should minimize the
absolute deviation between Ŷ t and Yt. For the validation of
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predictive models, if multiple one-step-ahead holdout samples can
be tested, the prediction performance measure can be expressed as
the mean absolute error with a h time horizon

Xnþh

t¼nþ1

jYt � Ŷ tjt�1j
h

(1)

where n is the index of current time, h is the size of the holdout
samples, Yt is the observations of product returns, and Ŷ tjt�1 repre-
sents a forecast of one-step ahead time based on discrete time
series Yt–1 and Xt–1. The goal is to find a good statistical model such
that the prediction performance measure in Eq. (1) is minimized.

2.1 Predictive Models in the Proposed Algorithm

2.1.1 ARIMA. The ARIMA model is a univariate time series
model, which relates returns to previous returns. The ARIMA
model (ARIMA(p, d, q)) is a combination of three models given as
[11]

ð1� /1B� � � � � /pBpÞð1� BÞdYt

¼ cþ ð1þ hBþ � � � þ hqBqÞet (2)

where B represents a backward shift operator, e.g., BYt¼Yt�1; the
first parenthesis is an autoregressive (AR) model of order p with
coefficients /, which is a linear combination of past observations;
the second parenthesis is an integration (or differencing opera-
tion); and the third parenthesis on the right-hand side is a moving
average (MA) model of order q with coefficients h, which is a lin-
ear combination of past forecast errors. The ARIMA model with
seasonal terms can be also found in Hyndman and Athanasopou-
los [11]. Hyndman and Khandakar [12] provided an automatic
forecasting algorithm to handle a large number of univariate time
series data.

2.1.2 DLM. DLM relates returns to previous sales with a
belief that the effects of previous sales are distributed over future
time periods. The distributed lag represents the current and lagged
values of the explanatory variable (sales) to predict the current
values of the response (returns). DLM is a dynamic model since
the effects of the explanatory variables are captured over time.
The finite DLM is given as

Yt ¼ aþ
Xt�1

s¼0

bsXt�s þ et (3)

where a is the intercept, bs is the distributed lag weight, and et is
the white noise. Note that generally xnþ1 (n is the index of current
time) is not available to forecast ynþ1 [1,2] (i.e., s should start
from 1 in Eq. (3) in this case).

In order to estimate the model in Eq. (3), either unrestricted or
restricted distributed lag weights can be used. The unrestricted
distributed lags can be directly estimated by least squares without
any restrictions on the lags. The possible problem of this approach
is multicollinearity, which can cause high variances of the esti-
mates. The restricted distributed lags were used by researchers to
reduce the effects of multicollinearity: the polynomial distributed
lag [13] and the infinite geometric lag [14]. These restricted dis-
tributed lags require an assumption of a certain form of lag
weights, and this information may be not available to design
engineers.

In the predictive model selection algorithm, the unrestricted
DLM is used to estimate the lag weights with maximum likeli-
hood estimation. If the algorithm finds that this candidate model is
the best, the restricted DLMs can be applied to improve the pre-
dictive performance.

2.1.3 Mixed Model. The two candidate models were dis-
cussed in Secs. 2.1.1 and 2.1.2. The last model is a mixed model

Fig. 1 A closed-loop supply chain

Table 1 DLM-based approaches

Literature Delay function modeling Product Data Note

Goh and Varaprasad [6] Transfer function Reusable bottles Real (open) No prediction test
Toktay et al. [1,7] Bayesian method Single-use cameras Real (hidden) No prediction test
Clottey et al. [2] Bayesian method Electronic parts Simulation (hidden) Limited prediction tests
Clottey and Benton [8] Bayesian method Electronic parts Simulation (hidden) Limited prediction tests

Table 2 Position of this paper

Model Data usage Note

ARIMA (univariate model) Yt¼F(Yt�1 & et) Criticized and not used in the literature
DLM (bivariate model) Yt¼F(Xt�1) Mainly utilized in the literature
Proposed model Yt¼F(Xt�1 & Yt–1 & et) Search for a better predictive model

Note: Yt is the returns, Xt is the sales, and et is the forecast errors.
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of the two candidate models. The regression model with ARIMA
errors is

Yt ¼ gðBÞXt þ ut (4)

cðBÞut ¼ dðBÞet (5)

where gðBÞ ¼ 1þ g1Bþ � � � þ gkBk with k order of regression
coefficient g; ut is an error term in the regression model; cðBÞ ¼
1� c1B� � � � � cpBp with coefficient c, which represents an AR
model of order p for ut; and dðBÞ ¼ 1þ d1Bþ � � � þ dqBq with
coefficient d, which represents an MA model of order q for ut. ut

can follow an autoregressive moving average process [11], which
may require a differencing operation, and et is the white noise.

2.2 Predictive Model Selection Algorithm. Figure 2 shows
the difference between the approach with the DLM in the litera-
ture (left) and the new predictive model selection algorithm
(right). While the DLM-based approach requires the strong and
static relationships between returns and sales, the predictive
model selection algorithm extends this to deal with the case that
the lag impact of sales is not strong enough or varying over time.
If sales data are not available, the univariate model (ARIMA) can
be the only option. If a multistep-ahead prediction is required, the
DLM-based approach needs predicted values of sales from the

ARIMA model. Finally, if design engineers do not know the exis-
tence of strong lag impacts, the following steps should be
assumed:

Step 1: Set a candidate model for forecasting future returns: (1)
previous Yt (ARIMA), (2) previous Xt (DLM), or (3) both (mixed
model).

Step 2: Fit the model along the candidate model based on
AIC¼�2ln(L)þ 2K, where L is the maximized likelihood value,
and K is the number of parameters in the model.

Step 3: Compare the three fitted models based on the prediction
performance measure in Eq. (1) with a reasonable h time horizon,
and select the best model.

Note that AIC can be used to compare different models but the
same data should be used to compute the likelihoods. For exam-
ple, AIC values cannot be compared with differencing operations
and regressors. Step 2 is the model selection, and step 3 is the
model validation. The algorithm reflects the important points for
predictive modeling as discussed in Sec. 1.3.

3 Case Study

The real data of reusable bottles studied by Goh and Varaprasad
[6] were used to test whether the predictive model selection algo-
rithm could find a better predictive model than the DLM. The hy-
pothesis is that a different predictive model can be the best
selection depending on data though the DLM was proposed as the
single best model in the literature.

Figure 3 shows the sales and returns of reusable bottles in a 60-
month period. The original study [6] used all the data to build a
model and did not conduct the performance test of the model.
This study used the first 50 data points for modeling based on the
recommendation of the original study (at least 50 data points for
time series models) and the last ten data points (i.e., holdout sam-
ples) for the validation of a predictive performance. It is also the
conventional validation method which partitions the data into two
sets (about 70% for modeling and 30% for validation).

The case study was conducted under three different scenarios.
The first scenario (Sec. 3.1) was when sales data at t¼ n were
available for returns at t¼ n as Goh and Varaprasad [6] assumed.
The second scenario (Sec. 3.2) was when sales data at t¼ n were
not available for returns at t¼ n as other researchers assumed
[1,2]. The third scenario (Sec. 3.3) was when there were strong
and static relationships between returns and sales, which was the
most favorite scenario for the DLM.

Fig. 2 Difference between DLM and proposed approach

Fig. 3 Sales and returns of reusable bottles (redrawn from
Ref. [6])
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3.1 When Sales Data From 1 to t Are Available for Return
Quantity at t. ARIMA models for time t¼ 51–60 were estimated
using the autocorrelation function (ACF) plot, the augmented
Dickey–Fuller test, and the extended ACF table [15]. For exam-
ple, the selected model for t¼ 51 was an ARIMA (1,1,0), which
was also the result of the automatic forecasting algorithm [12]. An
ACF and a unit root test of the residuals of the fitted ARIMA
model showed that the residuals were independent so that the fit-
ted model provided an adequate fit for the data. An ARIMA
(1,1,0) was selected for t¼ 51–57, and an ARIMA (2,1,1) was
selected for t¼ 58–60. The prediction performance measure in
Eq. (1) was calculated in Table 3.

DLMs were also estimated according to the predictive model
selection algorithm. Based on the DLM of Goh and Varaprasad
[6], DLMs with lag 0, 1, and 2 of sales (i.e., Xt, Xt�1, Xt�2) were
fitted for time t¼ 51–60, and the prediction performance measure
was calculated in Table 3. The ARIMA model provided a better
prediction performance than the DLM. One possible explanation
is that unlike the data at t¼ 1–50 in Fig. 3, the data from
t¼ 51–60 show more gaps between Yt and Xt, which can be
viewed as weak or time-varying relations.

The last candidate model is the mixed model. ARIMA models
with lag 0, 1, and 2 of sales were estimated. An ARIMA (1,0,0)
was selected for t¼ 51 and 52; an ARIMA (0,1,1) for t¼ 53, 59,
and 60; an ARIMA (0,1,2) for t¼ 54, 55, and 58; and an ARIMA
(1,1,1) for t¼ 56 and 57. The mixed model could not improve the
prediction performance measure.

In summary, when sales data at t¼ n were available for return
quantity at t¼ n with the real reusable bottles data, the proposed
algorithm selected the ARIMA model as the best predictive model
since the ARIMA model generated the lowest errors.

3.2 When Sales Data From 1 to t 21 Are Available for
Return Quantity at t. The proposed algorithm was applied to the
second scenario similar to the first scenario. Since the ARIMA
model did not use sales data, it remained the same. After fitting
DLMs, the prediction performance measure was calculated as
shown in Table 3. The result was worse than the DLM in Sec. 3.1
as the important information (xnþ1) was lost.

The interesting result was the mixed model. Table 3 shows that
the performance result of the mixed model outperformed that of
the ARIMA model. Unlike the mixed models in Sec. 3.1, an
ARIMA (0,1,0) with lag 0, 1, and 2 of sales was used mainly
(except for an ARIMA (0,1,1) for t¼ 53).

In summary, when sales data at t¼ n were not available for return
quantity at t¼ n with the real reusable bottles data, the proposed
algorithm selected the mixed model as the best predictive model.

3.3 When Strong Lag Impacts Exist. For this scenario,
return series were generated based on the real sales data of reus-
able bottles and the function 0.6Xt�1þ 0.4Xt�2þRandom error
[�100, 100]. The ARIMA, DLM, and mixed model were applied
to the new data, and the results are shown in Table 3. The DLM
provided the better prediction performance than the ARIMA
model. Based on the AIC, the mixed model chose the same DLM
(i.e., no ARIMA error). When the simulated data had strong and
static relationships between returns and sales, the proposed algo-
rithm selected the DLM as the best predictive model. As it is

expected, if design engineers have the lag pattern information of
the target system from subject-matter experts or economic theo-
ries, the DLM can work well for the forecast of product returns.

4 Discussion

In Sec. 3, the predictive model selection algorithm could sug-
gest a better predictive model than the DLM. In the first and sec-
ond scenarios with the real data, the ARIMA model and the mixed
model were selected as the best models. This section discusses the
application of the algorithm in remanufacturing and the three
issues (required sample size, performance of mixed models, and
different time series models) in the predictive models.

4.1 Application in Remanufacturing. The prediction per-
formance measure in Eq. (1) does not include the cost coeffi-
cients of overestimation and underestimation since the cost
coefficients do not affect the model fitting procedure. If the
cost coefficients are used in the prediction performance mea-
sure, the measure can provide misleading information of per-
formance (e.g., higher prediction errors might lead to lower
additional costs). Once the final model is available, the real
cost with the cost coefficients can be calculated. When the
cost coefficients are known in advance, the follow-up question
is whether the final model can be modified to reduce the real
cost. This is one of future works.

In remanufacturing operations, design problems can be formu-
lated [4,5]. For example, different specifications of computers can
be remanufactured with a combination of different cores, which
will provide different market shares. Design problems can be
solved with the sequential or simultaneous consideration of supply
chains and products.

4.2 Some Issues in Predictive Models. The first issue is the
required sample size for predictive models. It definitely depends
on data but generally the univariate time series model (ARIMA)
requires more data than the DLM because the DLM can utilize
other available data (i.e., sales series). Goh and Varaprasad [6]
recommended the data length of 50 for the reusable bottles data in
Sec. 3 when time series models were built.

The second issue is whether the mixed model is the best model
in the predictive model selection algorithm since it combines the
other two models. Table 3 shows that the results from the mixed
model can be worse than the other models. This indicates that
when the mixed model is fitted, it does not necessarily find the
optimal mixture of the other models.

The third issue is whether there are other time series models
other than the ARIMA model to improve the result. Depending on
the data, other variants of the ARIMA model can be used [16].
For example, the autoregressive conditional heteroscedastic/
generalized autoregressive conditional heteroscedastic models can
be used for heteroscedastic (nonconstant variance) errors as the
name indicates, which is popular in finance. For a long memory
(long-range dependence) model, the autoregressive fractionally
integrated moving average model can be used. If there exist com-
plex seasonal patterns such as high-frequency seasonality, multi-
ple seasonal periods, noninteger seasonality, and dual-calendar
effects, a modeling framework by De Livera et al. [17] can be
used.

Table 3 Results of prediction performance measure (best result with underline for each scenario)

ARIMA DLM Mixed model

Sales data from 1 to t are available for return quantity at t (Sec. 3.1) 31,000 38,500 36,000

Sales data from 1 to t� 1 are available for return quantity at t (Sec. 3.2) 31,000 43,200 27,500

Strong lag impacts exist between sales and returns (Sec. 3.3) 44,400 350 350

Note: Lower numbers are more desirable (A lower limit is zero).
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5 Conclusion

This paper proposed the predictive model selection algorithm
to deal with the uncertainty in closed-loop supply chains by iden-
tifying a better predictive model. The predictive model selection
algorithm focuses on the predictive power over new or future
returns and extends the set of candidate models that should be
considered. The proposed algorithm can provide a new insight for
forecasting returns since many researchers in the literature
assumed that there were always relatively strong and static rela-
tionships between returns and sales. The case study of reusable
bottles also showed that the predictive model selection algorithm
could find a better predictive model than the DLM.

In the future, more data can be tested with the predictive model
selection algorithm. Note that return series is usually considered
as count data so that the Gaussian ARIMA model may be not suit-
able for very low counts. However, when counts are large (e.g.,
the reusable bottles data in this paper), a Gaussian distribution
generally provides a good fit to the data.

Nomenclature

At ¼ volume of cores from core brokers
ARIMA ¼ autoregressive (AR) integrated (I) moving av-

erage (MA)
ARIMA(p, d, q) ¼ p order of AR part, d degree of differencing, q

order of MA part
B ¼ backward shift operator
co ¼ cost coefficient of overestimation
cu ¼ cost coefficient of underestimation
Dt ¼ monthly orders or demands

DLM ¼ distributed lag model
et ¼ forecast errors (white noise)
It ¼ volume of cores from inventory

Mt ¼ volume of cores from other manufacturers
n ¼ index of current time
ut ¼ error term in a mixed model
Xt ¼ observations of product sales
Yt ¼ observations of remanufacturable returned

products or cores
Ŷ t ¼ predicted volume of cores

Ŷ tjt�1 ¼ one-step ahead time forecast based on Yt–1 and
Xt–1

a ¼ intercept in DLM
b ¼ distributed lag weight in DLM
c ¼ coefficient of AR model for ut

d ¼ coefficient of MA model for ut

g ¼ regression coefficient in a mixed model
h ¼ coefficient of MA model
/ ¼ coefficient of AR model
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