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A tight upper bound for quadratic knapsack problems in
grid-based wind farm layout optimization

Ning Quan and Harrison M. Kim

University of Illinois at Urbana-Champaign, Department of Industrial and Enterprise Systems Engineering, Urbana,
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ABSTRACT
The0-1quadratic knapsackproblem (QKP) inwind farm layout optimization
models possible turbine locations as nodes, and power loss due to wake
effects between pairs of turbines as edges in a complete graph. The goal is
to select up to a certain number of turbine locations such that the sum of
selectednodeandedge coefficients ismaximized. Finding theoptimal solu-
tion to theQKP is difficult in general, but it is possible to obtain a tight upper
bound on the QKP’s optimal value which facilitates the use of heuristics to
solve QKPs by giving a good estimate of the optimality gap of any feasible
solution. This article applies an upper boundmethod that is especially well-
suited to QKPs in wind farm layout optimization due to certain features of
the formulation that reduce the computational complexity of calculating
the upper bound. The usefulness of the upper boundwas demonstrated by
assessing theperformance of the greedy algorithm for solvingQKPs inwind
farm layout optimization. The results show that the greedy algorithm pro-
duces good solutions within 4% of the optimal value for small to medium
sized problems considered in this article.
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1. Introduction

In recent years, wind energy has become one of the most promising alternatives to traditional fossil
fuels in power generation. According to the EuropeanWind Energy Association (Pineda et al. 2016),
wind power’s share of total installed power capacity increased from 2.4% in 2000 to 15.6% in 2015,
overtaking hydropower as the third largest power generation capacity. The United States Depart-
ment of Energy (2015) predicts that the prevalence of wind power would increase from 5% of current
power generation to 20% by 2030. Research into wind farm design generally seeks to determine
the location, number, and layout of turbines in the wind farm for optimizing some performance
measure, such as power generation or cost per unit of energy. The reader can refer to González
et al. (2012) and Herbert-Acero et al. (2014) for a review of past works in wind farm design
optimization.

Problems in wind farm layout optimization can be classified as continuous or grid-based depend-
ing on the feasible space for turbine placement. Continuous approaches allow for unrestricted
placement of turbines, while grid-based approaches allow placement of turbines over a regularly
spaced grid of possible locations. These two approaches are not mutually exclusive; previous works
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by Wagner et al. (2013); Réthoré et al. (2014); Park and Law. (2015); Long and Zhang. (2015)
have used grid-based approaches to find an initial layout, which is then refined using continuous
searchmethods. This article focuses on the grid-based approach, with power output maximization as
the objective.

The grid-based layout optimization problem can be modelled as an optimization problem over
an undirected complete graph. The nodes in the graph represent possible turbine locations, and
the edge between any two nodes represents wake effect interactions between turbines placed at
those two locations. When wind passes through a turbine’s disc, a wake cone of slower moving
air is created behind the turbine. Therefore, the problem of finding a power output maximiz-
ing layout is closely related to the problem of finding a layout where wake effect interactions are
minimized.

The optimization problem is complicated by the fact that the incoming wind speed to any turbine
is dependent on the relative positions of the other turbines in the farm. This means that the edge
coefficient that represents the mutual power loss caused by the turbines placed at the two nodes is
not a constant, but a function of the entire layout. Furthermore, the total power loss experienced by
a turbine placed at a particular node is a non-linear function of the connecting edge coefficients. For
example, the commonly used Jensen wake model (Katic et al. 1986) uses a sum-of-squares approach
to calculate the total wind speed deficit experienced by a turbine. All of this creates a non-linear,
non-convex discrete optimization problem that is very difficult to solve to global optimality. This
is why such heuristics as the genetic algorithm (Mosetti et al. 1994; Grady et al. 2005; Chen and
MacDonald. 2014; Dobrić and Duriić. 2014; Long and Zhang. 2015) or greedy algorithm (Zhang
et al. 2011; Saavedra-Moreno et al. 2011; Chen et al. 2013; Song et al. 2015) are commonly used to
find good, but not necessarily optimal, solutions.

The complexity of the grid-based layout optimization problem can be greatly reduced by ignoring
the influence of the entire layout when calculating node and edge coefficients. The node coefficient
becomes the power generated by a turbine placed at that location, without considering power loss due
towake overlaps, and the edge coefficient becomes a negative constant representing power loss caused
by the two turbines’ wakes on each other, without considering the wakes of other turbines in the wind
farm. The objective is also changed from power generation to a quadratic function of binary variables
indicating turbine placements in the grid. The squared and cross terms in the quadratic objective
function are paired with the corresponding node and edge coefficients. The overall goal is thus to
select up to a certain number of nodes, such that the sum of node and edge coefficients belonging to
the selected nodes is maximized. This produces a 0-1 quadratic knapsack problem (QKP) that has
a simple, straightforward formulation, but may not necessarily be easier to solve. Small instances of
the QKP can be transformed into an equivalent mixed integer linear program (MILP) and solved
to global optimality via branch and bound (Zhang et al. 2014; Turner et al. 2014), but the QKP is
NP-hard, as shown by Caprara et al. (1999), so heuristics must be used for problems problems with
denser grids.

This article puts forward the argument that the main advantage of using the QKP formulation in
wind farm layout optimization is not that it is solvable for small problem instances, but that there
are numerous ways of finding good upper bounds on the optimal values of QKPs. One can refer to
Pisinger (2007) for an in-depth review and comparison of methods for general QKPs. Obtaining a
globally optimal solution may be beyond reach for large QKPs in layout optimization, but getting a
tight upper bound on the optimal value can provide a good estimate of the optimality gap of any fea-
sible solution, and give the designer a measure of confidence in the solution generated by the chosen
heuristic.

An important question to consider is whether the lower-fidelity QKP formulation will produce
sub-par layouts compared with traditional formulations with power generation objective functions.
This article does not provide a conclusive answer for all possible problems, but comparisons for one-
dimensional problems are possible. Table 1 shows the percentage differences in power generation of
two optimal layouts produced using the Jensen wake model and the simpler approach used in the
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Table 1. Percentage difference in power generation of optimal layouts.

Ambient wind speed (m/s)

Turbine count 14 9 4

4 0 0 0
5 0 0.01 0.02
6 0.09 0.1 0.2
7 0.3 0.3 0.6

QKP formulation. The total power generation of both layouts was calculated based on the higher-
fidelity Jensen wakemodel. The feasible space consists of 20m spaced points along a 1600m line, and
the turbine model is the same as the one used in the numerical experiments in this article. The exam-
ple may be one-dimensional, but it reflects how power output in layout optimization is commonly
assessed along individual wind directions.

The results show that the power generation of the layout produced by the QKP formulation for a
variety of wind speeds and turbine counts is very close to the layout produced by the higher-fidelity
Jensen wake model. The same trend was observed for larger grid spacings of 40m and 80m. It seems
that the simplifications made in the QKP formulation do not result in a significant decrease in solu-
tion quality for the example considered in this article. In return, these simplifications produce a
formulation that has certain properties that allow a tight upper bound on its optimal value to be
found.

The contribution of this work is to adapt an upper bound method developed by Billionnet
et al. (1999) (denoted the BFS bound) for general QKPs to QKPs in grid-based layout optimization.
The BFS bound was chosen for its promising performance, as reported by Billionnet et al. (1999) for
general QKPs, and because the QKP formulation proposed in this article has certain properties that
improve the quality of the BFS bound and decrease its computational complexity.

The usefulness of the BFS bound is demonstrated; it is used to assess the performance of the
greedy algorithm for solving QKPs in grid-based layout optimization. The QKP formulation in
grid-based layout optimization is an example of a submodular maximization problem (Krause and
Golovin. 2014). A well-known result from Nemhauser and Wolsey. (1978) states that the solution
value generated by the greedy algorithm is at least 63% of the optimal value for submodular max-
imization problems with non-decreasing objective functions. In practice, the greedy algorithm is
usually able to perform much better than the worst-case bound, and has comparable performance
to the commonly used genetic algorithm, as demonstrated by Zhang et al. (2011). The BFS bound is
used in this article to get much tighter estimates of the optimality gaps of greedy solutions to a range
of QKP instances in grid-based layout optimization.

In the rest of the article, Section 2 introduces the QKP formulation in grid-based layout optimiza-
tion and elaborates on its submodular nature. Section 3 then describes in detail how the BFS bound
can be applied to QKPs in grid-based layout optimization, as well as the computational advantages
of the proposed QKP formulation. The numerical performance of the greedy algorithm is assessed in
Section 4, before conclusions are drawn in Section 5.

2. QKP formulation in grid-based layout optimization

2.1. QKP in grid-based layout optimization

The QKP formulation for grid-based layout optimization is given in Equation (1). A binary variable
xi is used to indicate whether a turbine is placed at a particular point i in the grid, and the set X =
{x1, . . . , xn} contains n binary variables corresponding to n points in the grid. The parameter T in the
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knapsack constraint denotes the maximum number of turbines to be placed on the wind farm.

max
xi=1,...,n

f (X) =
n∑

i=1
ciixi +

n∑
i=1

n∑
j=1
i �=j

cijxixj

subject to :
n∑
i=1

xi ≤ T

xi ∈ {0, 1} ∀i ∈ {1, . . . , n}

(1)

The coefficient cii represents the stand-alone expected power generated by a turbine placed at point
i, and the coefficient cij is defined in Equation (2). The term lij in Equation (2) represents the expected
power loss experienced by a turbine at point j caused by a turbine at point i (without considering any
other turbines in the wind farm). The definition places no restrictions on how lij is calculated, other
than the requirement that it must be non-negative. The wake models used in this article to calculate
lij are covered in the following subsection.

cij =
{

−P if ij violates minimum inter-turbine distance
−lij otherwise

(2)

There are no constraints in the QKP formulation enforcing minimum inter-turbine distance
requirements. A penalty approach is used instead by assigning a penalty P to the coefficient cij of any
pair ij that violates the minimum inter-turbine distance requirement. Suppose an optimal solution
has a pairmn with distance less than the minimum inter-turbine distance; then a better solution can
be found by setting either xm or xn to 0. The resulting solution still satisfies the knapsack inequality in
the QKP formulation, and the minimum increase in objective function value from getting rid of cmn
is 2P. The maximum possible decrease in objective function value from setting xm or xn to 0 is given
by the right-hand side of Equation (3). Therefore, if the problem admits feasible solutions, no pairs
violating the minimum inter-turbine distance requirement can be present in the optimal solution if
the penalty is set large enough to satisfy Equation (3).

2P > max
i

cii (3)

2.2. Wake andwind speedmodels

It is assumed in this article that the continuous range of wind directions is discretized. LetW represent
the set of wind directions, each with probability pw∈W of occurring. It is also assumed that each
direction w ∈ W has an associated wind speed probability density function fw. The power loss term
lij used in this article is defined in Equation (4).

lij =
∑
w∈W

pw
∫ +∞

0

(
G(vw) − G(vw,ij)

)
fw(vw)dvw (4)

The expression G(v) represents the power generated by a turbine with incoming wind speed of
v, and vw,ij is the incoming wind speed along direction w for a turbine at point j. Note that vw,ij is
calculated assuming that there are only two turbines placed at points i and j in the entire wind farm.
The wake model used to calculate vw,ij is taken from Lackner and Elkinton. (2007), and is shown in
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Figure 1. Downstream distance and wake cone diameter.

Equation (5).

vw,ij =
[
1 −

(
4Aw,ij

πD2
0

) (
1 − √

1 − Ct(vw)D2
0

D(dw,ij)2

)]
vw (5)

D0 in Equation (5) represents the turbine’s disc diameter, and Ct(v) is the thrust coefficient of the
turbine with an incoming wind speed of v. The term Aw,ij is the area of a turbine’s disc located at
point j that lies inside a wake cone originating from point i along direction w. The diameter D(dw,ij)
of the wake cone originating from point i along direction w at a downstream location j is given in
Equation (6), where κ is the wake expansion coefficient, and dw,ij is the downstream distance along
direction w between points i and j. The definitions of dw,ij and D(dw,ij) are made clear in Figure 1.

D(dw,ij) = D0 + 2κdw,ij (6)

The QKP formulation allows lij to be defined with any level of modelling fidelity. However, the net
effect of all pairwise interactions between turbines can only be linearly additive, which produces a
submodular maximization problem, as shown in the following subsection.

2.3. Submodularity of the objective function

Song et al. (2015) showed that the submodularity of the power generation objective function in grid-
based layout optimization holds under certain conditions when non-linear wake effect supposition
models are used.When the total wake effect is linearly additive, as in the case of the QKP formulation
considered in this article, the objective function’s submodular property holds in general.

Let F(Sk) be the objective value when k turbines are placed on the grid points in set Sk. Then for
any two sets Sk1 and Sk2 where Sk1 ⊂ Sk2 , and any grid point i /∈ Sk2 , F must satisfy the condition
shown in Equation (7) in order to be submodular.

F
(
Sk1 ∪ {i}) − F

(
Sk1

) ≥ F
(
Sk2 ∪ {i}) − F

(
Sk2

)
(7)

The submodularity condition in Equation (7) can be expressed in terms of the QKP’s objective
function coefficients, as shown in Equation (8). The interaction terms cij are non-positive, so the
submodularity condition holds for theQKP formulation considered in this article. The submodularity
of QKPs in grid-based layout optimization is illustrated in Figure 2, which shows how adding a new
turbine location i to solution Sk2 will produce more new wake interactions than adding i to Sk1 .

cii +
∑
j∈Sk1

(
cij + cji

) ≥ cii +
∑
j∈Sk1

(
cij + cji

) +
∑

j∈Sk2\Sk1

(
cij + cji

)
(8)

If the greedy algorithm can find a feasible solution for a givenQKP, then the large penalty term in cij
for infeasible location pairs can be replaced with lij, without changing the greedy solution value. The
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Figure 2. Illustration of submodularity.

magnitude of the power loss term lij is usually much smaller than the magnitude of the stand-alone
power generation term cii, so the objective function is non-decreasing for realistic problem instances,
and the increase in objective function value by adding i to Sk2 is smaller than adding i to any subset
of Sk2 .

Nemhauser and Wolsey. (1978) provided a worst-case bound on the performance of the greedy
algorithm for solving submodular maximization problems with non-decreasing set objective func-
tions. In practice, the greedy algorithm is capable of performing much better than the worst case.
This article references previous work done by Billionnet et al. (1999) to obtain a much tighter upper
bound on the optimal value of the QKP formulation in grid-based layout optimization.

3. The BFS bound

This section gives a detailed overview of the dual decomposition approach developed by Billionnet
et al. (1999) to calculate the BFS bound, and why it can be well-suited to QKPs in grid-based layout
optimization. The first step is to split the original grid into disjoint sets. Let {X1, . . . ,Xp} be a partition
of X into p disjoint sets. The notation used in the rest of the article is:

• Yk = X \ Xk.
• Ik (or Jk) is the index set of variables in Xk (or Yk).
• cl(i) is the index of the set that contains variable xi.
• xIk is the vector of variables xi, i ∈ Ik.
• xJk is the vector of variables xj, j ∈ Jk.

The original formulation can now be described in terms of this notation. First, let fk(xIk , xJk) be a
function defined as shown in Equation (9); fk(xIk , xJk) represents the original objective function bro-
ken down according to the grid partitions. The first term inEquation (9) is the total stand-alone power
generated by turbines in partition k, and the second and third terms represent the intra-partition and
inter-partition pairwise power losses, respectively. The original objective f (X) in Equation (1) can
now be expressed as a sum, f (X) = ∑p

k=1 fk(xIk).

fk(xIk) =
∑
i∈Ik

ciixi +
∑
i∈Ik

∑
i′∈Ik
i �=i′

cii′xixi′ +
∑
i∈Ik

∑
j∈Jk

cijxixj (9)

In the next step, copies of the variables in xJk are created for every disjoint set k. These copies
(denoted ykj∈Jk) collectively form the vector yJk , and constraints shown in Equation (10) are added to
the original formulation to maintain consistency between the original variables and their copies.

xj = ykj ∀j ∈ Jk, ∀k ∈ {1, . . . , p}
xiy

cl(i)
j = xjy

cl(j)
i ∀i ∈ {1, . . . , n − 1}, ∀j ∈ {i + 1, . . . , n}, cl(j) �= cl(i) (10)
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These changes are made to the original QKP formulation, yielding the equivalent formulation
shown in Equation (11), where x (or y) is the vector of xi (or ykj ) variables.

max
x,y

f̄ (x, y) =
p∑

k=1

⎛
⎜⎜⎜⎝

∑
i∈Ik

ciixi +
∑
i∈Ik

∑
i′∈Ik
i �=i′

cii′xixi′ +
∑
i∈Ik

∑
j∈Jk

cijxiykj

⎞
⎟⎟⎟⎠

subject to :

xj = ykj ∀j ∈ Jk, ∀k ∈ {1, . . . , p} (11a)

xiy
cl(i)
j = xjy

cl(j)
i ∀i ∈ {1, . . . , n − 1}, ∀j ∈ {i + 1, . . . , n}, cl(j) �= cl(i) (11b)

∑
i∈Ik

xi +
∑
j∈Jk

ykj ≤ T ∀k ∈ {1, . . . , p} (11c)

xi ∈ {0, 1} ∀i ∈ Ik, ∀k ∈ {1, . . . , p} (11d)

ykj ∈ {0, 1} ∀j ∈ Jk, ∀k ∈ {1, . . . , p} (11e)

Constraints (11a) and (11b) can be brought into the objective function via dual relaxation. The
Lagrangian multipliers

λ =
(
λkj

)
1≤k≤p, j∈Jk

and

μ = (
μij

)
1≤i<j≤n, cl(i)�=cl(j)

are introduced for constraints (11a) and (11b), respectively. Relaxing constraints (11a) and (11b)
makes the formulation in Equation (11) completely separable, with each subproblem k ∈ {1, . . . , p}
having decision variable vectors xIk and yJk . The objective function of the relaxed formulation, also
known as the Lagrangian function L, can be expressed as shown in Equation (12).

L(x, y,λ,μ) =
p∑

k=1

(∑
i∈Ik

(
cii +

∑
h �=k

λhi

)
xi −

∑
j∈Jk

λkj y
k
j

+
∑
i∈Ik

∑
i′∈Ik
i �=i′

cii′xixi′ +
∑
i∈Ik

∑
j∈Jk
i<j

(
cij + μij

)
xiykj +

∑
i∈Ik

∑
j∈Jk
j<i

(
cij − μji

)
xiykj

)
(12)

The dual function w(λ,μ) of the formulation in Equation (11) is the maximum of L(x, y,λ,μ)

with respect to x, y, and subject to the constraints (11c), (11d), and (11e):

w(λ,μ) = max
x,y

s.t.(11c),(11d),(11e)

L(x, y,λ,μ) (13)

The dual functionw(λ,μ) is convex (Bertsekas 2008), and provides an upper bound on the optimal
solution of Equation (11). The BFS bound is obtained by minimizing w(λ,μ) with respect to the
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Lagrangian multipliers λ and μ using the subgradient method described in Held et al. (1974), the
details of which will be provided in Section 4.

Evaluation of the dual function for fixed λ, μ can be performed in parallel since the Lagrangian
maximization problem in Equation (13) can be separated into p independent Lagrangian sub-
problems, as shown in Equation (15), where Lk (Equation (14)) is the part of L belonging to
subproblem k.

Lk(xIk , yJk ,λ,μ) =
∑
i∈Ik

⎛
⎝cii +

∑
h �=k

λhi

⎞
⎠ xi −

∑
j∈Jk

λkj y
k
j

+
∑
i∈Ik

∑
i′∈Ik
i �=i′

cii′xixi′ +
∑
i∈Ik

∑
j∈Jk
i<j

(
cij + μij

)
xiykj +

∑
i∈Ik

∑
j∈Jk
j<i

(
cij − μji

)
xiykj (14)

max
xIk ,yJk

Lk(xIk , yJk ,λ,μ)

subject to :

xi ∈ {0, 1} ∀i ∈ Ik (15a)

ykj ∈ {0, 1} ∀j ∈ Jk (15b)

∑
i∈Ik

xi +
∑
j∈Jk

ykj ≤ T (15c)

3.1. Computational advantages of grid-based layout optimization

The Lagrangian subproblem in Equation (15) reduces to a linear knapsack problem when xIk is fixed.
Therefore, finding the optimal solution to the Lagrangian subproblem involves solving a linear knap-
sack problem with respect to yJk for every combination of values in xIk (Billionnet et al. 1999). Note
that the coefficients of the knapsack inequality in Equation (15c) are not ones in general QKPs, so
using the standard greedy algorithm to solve the linear knapsack problem will only give an upper
bound on the optimal solution. This is obviously not the case for grid-based layout optimization,
where the greedy algorithm will give the integer optimal solution to the Lagrangian subproblem,
leading to a better BFS bound.

Intuitively, the performance of the BFS bound improves as the number of partitions decreases (the
BFS bound and optimal value are equal when there is only one partition). However, the computa-
tional complexity of solving the Lagrangian subproblem using the enumerative approach mentioned
is O(2|Xk|) for general QKPs, which prevents each partition Xk from becoming too large. The QKPs
in grid-based layout optimization are not restricted as much by this issue since infeasible grid point
pairs are penalized. If the penalty is large enough that the optimal solution to the Lagrangian sub-
problem in Equation (12) cannot contain infeasible pairs from the same partition, then only feasible
combinations of points in xIk need to be considered in the enumerative process of finding the optimal
solution to the Lagrangian subproblem.

Infeasible grid point pairs from the same partition can be ignored if the penalty term P for any
infeasible pair ij from partition k satisfies the criterion shown in Equation (16). The explanation for
Equation (16) is similar to the explanation for Equation (3). Suppose the optimal solution to the kth
Lagrangian subproblem contains an infeasible pair of grid points from Xk; Equation (16) shows that
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it is possible to obtain a better solution by removing one of the points from the infeasible pair, leading
to a contradiction.

2P > max
i∈Ik

⎧⎨
⎩cii +

∑
h �=k

λhi

⎫⎬
⎭ + (T − 2) max

i∈Ik,i′∈Ik,j∈Jk,j′∈Jk
j>i,j′<i

{
0, cii′ , cij + μij, cij′ − μij′

}
(16)

The criterion in Equation (16) depends on the value of the Lagrangianmultipliers in every iteration
of the BFS algorithm so P needs to be first set to some value that is at least as large as the criterion
shown in Equation (3). The criterion in Equation (16) is then checked after the BFS algorithm to
determine whether P was set large enough. The Lagrangian subproblems are solved using the greedy
algorithm so P can be set to some arbitrarily large constant that also satisfies Equation (3) (feasibility
condition) without any numerical issues.

The elimination of infeasible pairs from the evaluation of the Lagrangian subproblem allows
for larger partitions and consequently better bounds without significantly increasing the computa-
tional complexity of the BFS bound. This property, together with the fact that the greedy algorithm
gives integer optimal solutions to the Lagrangian subproblem for fixed xIk , is why the BFS bound is
particularly well-suited for QKP problems in grid-based layout optimization.

4. Numerical experiments

4.1. BFS algorithm

The detailed steps of calculating the BFS bound are described in Algorithm 1. Let λ(t) (orμ(t)) be the
vector of λ (orμ) Lagrangianmultipliers at iteration t. The rest of the notation used in the algorithm’s
description follows from Section 3.

The initial upper bound UB0 is set to some large multiple β of the best lower bound LB. The best
lower bound is obtained by starting the greedy algorithm at every grid point, and then selecting the
best solution. The BFS algorithm (Algorithm 1) runs until the iteration limit tlim is reached.

The multiplier update step in the BFS algorithm is based on the work done by Held et al. (1974).
Ideally, the numerator in the subgradient coefficient should beUBt − f ∗, where f ∗ is the optimal solu-
tion to the primal problem. The implementation of the multiplier update step in this article replaces
f ∗ with γ LB, where LB is the objective function value of the best greedy algorithm solution, and γ is a
number slightly larger than one. The step size parameter α, and the practice of decreasing α whenever
the algorithm fails to improve the upper bound for conseclim consecutive iterations was proposed by
Caprara et al. (1999).

4.2. Greedy algorithm performance

The BFS bound was used to assess the performance of the greedy algorithm for a number of exper-
iments, as shown in Table 2. Every wind farm size and turbine count combination was paired with
two wind profiles and two grid configurations, giving a total of 24 experiments.

Wind profiles 1 and 2 each have 360 directions with equal probability. According to Feng and
Shen. (2015), using a large number of wind directions gives a more realistic assessment of wind farm

Table 2. Experiment settings.

Wind farm dimensions Turbines Wind profiles Grid configurations

1120 × 1200m (small) 9, 14
1760 × 1760m (medium) 25, 32 1, 2 Sparse, dense
2400 × 2400m (large) 49, 56
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Algorithm 1 BFS algorithm.
Let LB be the best lower bound, and UBt be the BFS bound at iteration t
t = 0; UB0 = βLB; consec = 0; α = 2
λkj (0) = 0, ∀j ∈ Jk, ∀k ∈ {1, . . . , p}
μij(0) = 0, ∀i ∈ {1, . . . , n − 1}, ∀j ∈ {i + 1, . . . , n}
while t < tlim do

Increment t by 1
for each k ∈ {1, . . . , p} do

(xIk∗, yJk∗) = argmin xIk ,yJk
s.t.(11c),(11d),(11e)

Lk
(
xIk , yJk ,λ (t) ,μ (t)

)
end for

UBt = ∑p
k=1 Lk(x

∗
Ik , y

∗
Jk ,λ,μ)

if UBt >= UBt−1 then increment consec by 1
else consec = 0
end if

Subgradient calculation:
φk
j = x∗

j − ykj
∗;

δij = x∗
i y

cl(i)∗
j − x∗

j y
cl(j)∗
i

if consec = conseclim then
Decrease α by half; Set consec = 0

end if

Update λ multipliers for each k ∈ {1, . . . , p}:
λkj (t) = λkj (t − 1) − α

UBt−γ LB∑p
k=1

∑
j∈Jk

(
φk
j

)2+∑
1≤i<j≤n(δij)

2
φk
j

Update μ multipliers:
μij(t) = μij(t − 1) − α

UBt−γ LB∑p
k=1

∑
j∈Jk

(
φk
j

)2+∑
1≤i<j≤n(δij)

2
δij

end while

power generation.Wind speeds along all wind directions in both profiles are assumed to haveWeibull
distributionswith shape parameter 2, and the average wind speeds shown in Figure 3. Both sparse and
dense grid configurations have regularly spaced grid points, with the point-to-point distance being
160m in the sparse configuration, and 80m in the dense configuration.

The turbine model used for all experiments has a disc diameter D0 of 80m, and a rated power of
1.5MW. A minimum inter-turbine distance of 320m was enforced for all experiments. The power
curve and thrust coefficient curve of the turbine used in the experiments are shown in Figure 4. The
power curve is based on a reference turbinemodel developed by Jonkman et al. (2009), and the thrust
coefficient curve is based on the curve used by Pérez et al. (2013).

The BFS algorithm was run for 1500 iterations for all of the 24 experiments. The average con-
vergence history of the BFS bound for small, medium, and large wind farm experiments is shown
in Figure 5. Convergence of the BFS bound was slower for larger wind farms, but 1500 iterations
was sufficient for the BFS bound to reach a reasonable degree of convergence for all wind farm
sizes.

The final optimality gaps, number of partitions, and the values of the γ parameter used in the
BFS algorithm for the dense and sparse grid configurations are shown in Tables 3 and 4, respectively.
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Figure 3. Average wind speeds in wind profiles 1 and 2.

Figure 4. Turbine thrust coefficient curve, and power curves for different values of P0.

Figure 5. Average BFS bound convergence for small, medium, and large wind farms.

Note that the number of partitions used in the experiments is larger than what is possible for general
QKPs, owing to themodifications proposed in Section 3.1 that allow increased partition sizes without
significantly increasing the computational complexity of calculating the BFS bound.
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Table 3. Dense grid experiment results.

Optimality gap

Wind farm Turbines Grid points Partitions γ Wind profile 1 Wind profile 2 LP

1120 × 1120m 9 225 8 1.00 0.022 0.021 0.051
1120 × 1120m 14 225 8 1.00 0.032 0.035 0.115
1760 × 1760m 25 529 18 1.01 0.079 0.072 0.136
1760 × 1760m 32 529 18 1.01 0.109 0.100 0.211
2400 × 2400m 49 961 30 1.02 0.127 0.116 0.230
2400 × 2400m 56 961 30 1.02 0.142 0.131 0.296

Table 4. Sparse grid experiment results.

Optimality gap

Wind farm Turbines Grid points Partitions γ Wind profile 1 Wind profile 2 LP

1120 × 1120m 9 64 8 1.00 0.002 0.004 0.052
1120 × 1120m 14 64 8 1.00 0.001 0.002 0.111
1760 × 1760m 25 144 12 1.01 0.035 0.027 0.137
1760 × 1760m 32 144 12 1.01 0.050 0.043 0.214
2400 × 2400m 49 256 16 1.02 0.081 0.076 0.226
2400 × 2400m 56 256 16 1.02 0.098 0.079 0.286

Let FUB and FLB denote the BFS bound and best greedy solution value, respectively. The optimality
gap is then defined as

FUB − FLB
FLB

The values under the ‘LP’ columns in Tables 3 and 4 are the averaged optimality gaps across bothwind
profiles obtained by replacing FUB with the optimal value of the linear programming relaxation of the
QKP formulation (Equation (1)). The QKP formulation can be converted to an equivalent MILP, as
shown by Turner et al. (2014). The integer requirements in theMILP can then be relaxed to obtain an
upper bound on the QKP’s optimal value. The LP optimality gaps are provided to serve as a baseline
for evaluating the performance of the BFS bound.

The results show that the optimality gaps for wind profile 2 are usually smaller than the optimality
gaps for wind profile 1, especially as problem size increases. One possible explanation is that the
square wind farms used in the experiments are better suited to wind profile 2, with two orthogonal
primary wind directions, than to wind profile 1, with only one primary wind direction, which would
be better suited to a rectangular wind farm. As demonstrated by Chowdhury et al. (2014), the relation
between wind farm shape and wind profile can have a significant effect on power output.

The optimality gaps in Tables 3 and 4 were averaged over the two wind profiles, and the results are
shown in Figure 6. The greedy algorithm was able to produce near-optimal solutions for the smallest
problems, with 64 grid points. As the number of grid points or turbines increased, a clear increase in
optimality gaps was observed.When the number of grid points was fixed and turbine count increased,
the optimality gap increased by 1.3% on average. Conversely, a much larger increase, of 4.1% on
average, was observed when the turbine count was fixed and the number of grid points was increased.

The actual gap between the greedy solution value and the optimal value is likely to be less than the
observed gap since the observed gap includes the BFS bound’s overestimation of the optimal value. It
is also likely that the accuracy of the BFS boundwill degradewith increasing problem size. It is difficult
to pinpoint the exact contribution of the BFS bound’s overestimation toward the observed optimality
gap, since optimal values of large problems are very difficult to obtain, if at all possible. However,
for small to medium-sized wind farms with fewer than 300 grid points and 30 turbines or fewer,
the observed gaps were small enough to suggest that the greedy algorithm is a capable alternative
to optimal solution methods. Observed optimality gaps for experiments of that size were 1.8% on
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Figure 6. Average optimality gaps for various wind farm sizes, grid configurations, and turbine counts.

average, and less than 3.3% for all cases. If the designer is willing to accept a larger optimality gap of
8%, the greedy algorithm can be a suitable solution method for medium to large wind farms with up
to 500 grid points or 50 turbines. When the number of grid points and turbines increases past that
mark, the optimality gaps became too large to make anymeaningful judgements on greedy algorithm
performance.

5. Conclusions

The QKP formulation offers a simplified, graph-based approach toward grid-based wind farm layout
optimization. The QKP formulation can be reduced to a mixed integer linear program that, theoret-
ically, can be solved to optimality using branch and bound solvers. In practice, branch and bound
solvers may struggle to solve even small QKP instances, so a heuristic like the greedy algorithm
is a more reliable solution method, especially given the submodular nature of the QKP’s objective
function.

A theoretical lower bound on the optimality of the greedy solution exists for generic submodular
maximization problems but, as this article has demonstrated, it is possible to obtain amuch tighter and
more useful optimality gap by adapting the BFS bound developed by Billionnet et al. (1999) to QKPs
in grid-based layout optimization. This article demonstrates the use of the BFS bound to evaluate
the optimality of greedy solutions for a range of experiments. One of the primary conclusions drawn
from the experiments is that the greedy algorithm is a good alternative to optimal solution methods
for small to medium-sized QKPs considered in this article, but the observed optimality gaps became
too large for any meaningful judgements on greedy solution quality when problem sizes increased
further.

The accuracy of the BFS bound could be improved by reducing the number of partitions even fur-
ther, but this would drastically increase the computational complexity of calculating the bound as the
number of linear knapsack problems that need to be solved for each evaluation of the dual function
increases in a near-exponential manner with increasing partition size. This issue can be partly miti-
gated by the fact that evaluation of the dual function can be easily parallelized, so extra computational
resources can be effectively used to cut computational times for large problem instances. The shape of
the partitions could also be a factor that affects BFS bound accuracy and computational complexity. It
was observed that narrower, rectangular partitions produced better bounds than square partitions of
the same size. Future work could explore the effects of using more complicated partitioning schemes,
such as non-regular partitions or disjointed partitions on the trade-off between BFS bound accuracy
and computational complexity.
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The BFS bound could also be used to reduce problem size by eliminating grid points that belong to
far-from-optimal solutions. This concept has been applied successfully to general QKPs by Pisinger
et al. (2007), and could be a promising method to reduce problem sizes of large QKPs in grid-based
layout optimization to somethingmore tractable for the greedy algorithm, or even branch and bound
solvers, which can produce optimal solutions if the problem is small enough.
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