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Abstract This article addresses the challenge of deter-

mining optimal product family architectures with customer

preference data. The proposed model, predictive data-dri-

ven product family design (PDPFD), expands clustering-

based approaches to incorporate a market-driven approach.

The market-driven approach provides a profit model in the

near future to determine the optimal position and number

of product architectures among product architecture can-

didates generated by the k-means clustering algorithm. An

extended market value prediction method is proposed to

capture the trend of customer preferences and uncertainties

in predictive modeling. A universal electric motors design

example is used to demonstrate the implementation of the

proposed framework in a hypothetical market. Finally, the

comparative study with synthetic data shows that the

PDPFD algorithm maximizes the expected profit, while

clustering-based models do not consider market so that less

profit can be achieved.

Keywords Product family design � Clustering-based
approach � Market-driven approach � Prediction intervals �
Predictive design analytics

1 Introduction

Today’s highly competitive market situation and enormous

data generation environment mean companies and design

engineers have to consider a wide variety of customer

preferences and requirements. Massive-scale customer

preference data are available from various data sources

such as company databases, social networks, and click-

streams. In order to accommodate the diversity of customer

preferences, designing a family of products becomes a

prevailing strategy across many industries (Tseng 1998;

Simpson 2004; Simpson et al. 2012).

Product family design represents designing ‘‘a set of

products that share one or more common elements (e.g.,

components, modules, and subsystems)’’ in order to satisfy

various market applications (Simpson et al. 2014). The

product family design paradigm was successfully imple-

mented by companies such as Sony, Hewlett Packard,

Black & Decker, Volkswagen, and Rolls Royce (Simpson

et al. 2012, 2014). One of the important tasks in this

complex engineering design problem is the determination

of optimal product family architectures (de Weck et al.

2003). The product architecture is ‘‘the arrangement of

functional elements to the physical building blocks’’ (Ul-

rich and Eppinger 2012) and works as a target (e.g., per-

formance requirements) of engineering design for product

variants (de Weck et al. 2003).

The main question considered in this article is how to

determine the optimal product family architectures with

customer preference data. Clustering-based methodologies

(Tucker et al. 2010; Chan et al. 2012) were presented to

identify central points of clusters (market segments) in the

customer preference space (performance requirements).

The central points are ideal points in market segments

(Chan et al. 2012) and are also product family architecture
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candidates. Tucker et al. (2010) proposed that a clustering

technique can enable design engineers to identify the

optimal number of product architectures. This article

expands these clustering-based approaches (Tucker et al.

2010; Chan et al. 2012) to incorporate a market-driven

approach (de Weck et al. 2003; Kumar et al. 2009). The

market-driven approach provides a profit model as an

objective function to determine optimal product architec-

tures. Unlike the previous market-driven approaches (de

Weck et al. 2003; Kumar et al. 2009), this article does not

assume that (1) market segments are given and (2) cus-

tomer preferences are static (i.e., no change over time).

Figure 1 shows the example of a clustering-based

approach in the two-dimensional (requirements 1 and 2)

customer requirement (circles) space. The objective is to

determine the position and number of product architectures

(e.g., one rectangle and three triangles) in order to satisfy

customers’ requirements. Previous clustering-based

approaches only consider their clustering objective func-

tions. For example, the product architecture in the middle

(rectangle) can be chosen by clustering methods but it

might end up with an inferior solution from the perspective

of markets. With the guidance of market-driven approa-

ches, clustering-based approaches can produce the most

economical clusters for decision makers. Once architec-

tures are determined, then clusters can be interpreted as

market segments (dotted lines).

Figure 2 shows the example of a market-driven

approach, which evaluates product architecture candidate

sets (one rectangle and three triangles in Fig. 1) in terms of

profit. With estimated revenue and production cost, the

profit and its uncertainty (dotted line) can be estimated.

Note that the X-axis represents the number of product

architectures and the Y-axis represents the monetary value.

When the number of product architectures is increased, the

fixed costs will be increased with more product variants.

However, since more customers’ product requirements can

be satisfied, revenue can be increased too. Figures 1 and 2

together show the necessity of the market-driven approach

in the clustering-based approach.

The product family design scenario that this article

focuses on is presented as follows. The products of interest

are products or parts that can be highly shared by many

other products, including universal motors in power tools

and home appliances, engines in on and off-road vehicles,

and batteries in electronics. These products should satisfy a

wide variety of different customers’ requirements. A

company wants to analyze historical transactional data in

order to support its next product family architecture deci-

sion for new orders.

Predictive, data-driven product family design (PDPFD)

proposed in this article aims to merge clustering-based and

market-driven approaches based on the predictive design

analytics (Ma et al. 2014; Ma and Kim 2014), which

enables design engineers to extract knowledge from large-

scale, multidimensional, unstructured, volatile data, and

transform that knowledge and trend into design decision

making. The proposed framework introduces predictive

profit modeling in a clustering-based model so that it can

support complex product family architecture decisions. For

predictive profit modeling, an updated market value pre-

diction method is proposed with time series analysis. The

proposed framework is demonstrated using a universal

motor design problem (Simpson et al. 2001) with a larger

volume of customer preference data than previous clus-

tering-based approaches (Tucker et al. 2010; Chan et al.

2012). Finally, a previous clustering-based method (Tucker

et al. 2010) is compared to the PDPFD method in order to

show the benefits of the proposed method.

The rest of the paper is organized as follows: Sect. 2

provides related work in the area of clustering-based and

market-driven product family design. The proposedFig. 1 Example of clustering-based approach

Fig. 2 Example of market-driven approach
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approach is presented in Sect. 3 followed by a case study in

Sect. 4. The benefits and limitations of the proposed

framework along with future work are discussed in Sect. 5.

2 Related work

2.1 Product family design

Recent advances in product family design were discussed

in Pirmoradi et al. (2014) from customer needs, functional

requirements, design parameters, process variables to

logistics variables. Basically, there are two approaches in

product family design to utilize a product platform (‘‘the

set of parameters and/or features that remain constant’’

(Simpson et al. 2001): module-based and scale-based pro-

duct family design (Simpson 2004). Module-based product

family design represents building-related products using

functional modules from the platform, while scale-based

product family design represents designing related products

by varying (e.g., stretch or shrink) scaling variables while

making common parameters constant. Examples of both

approaches can be found in Simpson (2004).

This article focuses on multiple-platform scale-based

product family design with known common parameters.

Multiple-platform design was studied using a heuristic

approach with clustering analysis based on sensitivity

analysis (Dai and Scott 2007) and an information theoret-

ical approach (Chen and Wang 2008). Some previous

works (Nayak et al. 2002; Messac et al. 2002; Chen and

Wang 2008) discussed product family design with

unknown common parameters.

In multiple-platform scale-based product family design,

product family architecture design is a target setting

problem for product variants (de Weck et al. 2003). It is

also a positioning problem of a product family into dif-

ferent market segments or clusters of customer preferences

(Pirmoradi et al. 2014). Clustering can be used to find the

number of product variants which encompass the maxi-

mum possible customer preferences (Pirmoradi et al.

2014). Two approaches in product family architecture

design will be reviewed in the following sections.

2.2 Clustering-based product family design

With the emergence of large database management system

and significant improvements in storage devices, corpora-

tions are now able to utilize large-scale data for decision

making. To this end, clustering-based or data mining

models were proposed to support the product family

architecture design problem.

Agard and Kusiak (2004) introduced the possible usage

of data mining-based methodologies for product family

design. Given that customer demographics and functional

requirements are available, clustering methods can be

applied to group similar customers so that a representative

customer can be identified. Also, functional requirements

can be associated with each other in order to find depen-

dencies using association rule mining techniques (Witten

and Frank 2005). Moon et al. (2006) proposed that data

mining techniques can identify a platform with variants and

unique modules. Association rule mining captured associ-

ated rules from product functions, and these rules were

clustered as modules using fuzzy c-means clustering

(Bezdek 1981). Tucker et al. (2010) developed a product

family optimization model with ReliefF attribute weighting

(Kira and Rendell 1992) and X-means clustering (Pelleg

and Moore 2000) techniques. The X-means clustering gave

the number and specifications of architectures, and the

ReliefF provided the importance of each design attribute in

the optimization model. Chan et al. (2012) proposed fuzzy

clustering to group customer requirements as market seg-

ments. The center points of market segments were used for

the development of product variants.

Tucker et al. (2010) and Chan et al. (2012) showed that

market segmentation can be realized automatically by

clustering methods instead of being assumed to be given or

resorting to experts’ opinions. However, they did not

consider market so it is possible to have sub-optimal

solutions in terms of profit as shown in Figs. 1 and 2.

Moreover, previous studies involved small data sets [e.g.,

50 in Chan et al. (2012) and 1000 in Tucker et al. (2010)].

2.3 Market-driven product family design

A market-driven approach in product family design aims to

integrate market considerations with product family

architecture design (Pirmoradi et al. 2014). In order to

translate customer requirements into design requirements

(including functional requirements), quality function

deployment and its variant techniques were used (Simpson

et al. 2012; Pirmoradi et al. 2014). Discrete choice analysis

(Train 2003; Wassenaar and Chen 2003; Wassenaar et al.

2005) is a popular model in engineering design problems to

map design attributes into market share estimation.

de Weck et al. (2003) proposed a methodology that

determines the optimum number of product platforms to

maximize product family profitability with simplifying

assumptions. The methodology is divided into family-level

(platform architecting) and variant-level (product opti-

mization) design. First, market segments and correspond-

ing market leaders should be identified. The number of

market segments is set to be the maximum number of

product platforms. Second, the design variable set, objec-

tive function, and demand equation for a single market

segment needs to be established. Since each market
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segment is assumed to have a unique performance

requirement, each segment represents each platform. Third,

product architectures should be optimized for a given

performance requirement, and the profit of the product

family can be estimated. de Weck et al. (2003) assumed

that all the necessary information of the first and second

step is given so that the determination of number of plat-

forms is the only decision variable in the family level (i.e.,

no architecture specification).

Kumar et al. (2009) developed market-driven product

family design, which expands the demand modeling part of

de Weck et al. (2003). First, the methodology starts from

the creation of market segments. All the necessary infor-

mation such as required performance, price, customer

demographics, and competitors are identified. After that, a

nested logit demand model (Train 2003) is built. The role

of the demand model is to determine the market share of

each market segment with specified product performance,

customer demographics, and price. Second, models for

product performance and costs need to be built. These

models make trade-offs between cost and performance in

the demand model. Third, optimal product specifications

and number of platforms are identified to maximize the

overall profits. Similar to the work of de Weck et al.

(2003), product specifications for each segment were given

as different constraints.

These market-driven approaches extend the scope of

product family design by introducing a profit model. The

number of product family architectures was considered as

one of the design variables to maximize the profit function.

However, information about market segments was assumed

to be given instead of derived. Moreover, the profit model

based on discrete choice analysis is static, which means a

built model in the past can be used anytime in the future.

This article relaxes the stationarity of profit modeling. Ma

et al. (2014) and Ma and Kim (2014) showed that future

trends could be captured from historical data using trend

mining techniques, and incorporated in design problems.

3 Proposed approach: predictive, data-driven
product family design

3.1 Overview

Figure 3 outlines the framework of PDPFD. There are two

stages: individual product design stage and product family

design stage. The individual product design stage involves

the enterprise level and engineering level (Wassenaar and

Chen 2003; Wassenaar et al. 2005; Chen et al. 2012). The

enterprise level represents managerial level decision mak-

ing for maximizing the expected profit with respect to the

number and specifications of architectures as targets. The

engineering level represents physical design with respect to

engineering-level design variables (e.g., thickness and

length of parts). The objective function consists of local

objective functions (e.g., minimizing product’s weight) and

the deviation term for target matching (e.g., satisfying

performance requirements). If the enterprise-level target is

infeasible, then a new target should be explored. Once the

individual product design stage decisions are made, the

next step is to determine product family design. Based on

the determined product variants, a decision-making process

for scale-based product family design is explored. Scaling

variables (i.e., the reduced design variables) of the archi-

tectures can be stretched or shrunk to satisfy the same

objective function in engineering level, while common

parameters remain constant. The common parameters

constitute the product platform.

Three important tools are a market value prediction

model with exponential smoothing for market considera-

tions (Sect. 3.3), k-means clustering (MacQueen 1967;

Witten and Frank 2005) for product family architecture

candidates (Sect. 3.4.1), and expectation maximization

clustering (Dempster et al. 1977) for multiple-platform

design (Sect. 3.5). The first tool will capture a trend of

customer preferences and uncertainties, the second tool

will find the optimal number of architectures to minimize

deviations between customer requirements and perfor-

mance of architectures, and the last tool will figure out the

possibility of multiple platforms.

3.2 Data structure and assumptions

The main question in a data-driven model is how to repre-

sent data. Figure 4 shows the basic data structure. The index

t represents discrete time, and data at t ¼ n indicate the

current data. In the historical data set from t ¼ 1 to t ¼ n,

transactional information is available, which is the set of

data on product requirements (e.g., torque and efficiency),

chosen product architectures (e.g., a1 and a2), and the dis-

counted price that customers paid based on their utility for

the chosen product architecture. Note that discounts can be

applied if the product requirements cannot be matched. The

goal is how to determine the position and number of product

architectures at h time ahead (i.e., at t ¼ nþ h). Further-

more, the trend in customer preferences in historical data is

captured and reflected in a profit function.

The transaction tables in Fig. 4 also show the generation

of the deviation between what customers want and what

products provide. By generating the deviation columns

from product requirements and product architectures, the

impact of increasing or decreasing product architectures

can be investigated in terms of discounts.
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The availability and quality of data are critical in data-

driven models. While public data (e.g., product specifica-

tions) can be used for product positioning problems (Lei

and Moon 2015), the data set utilized in this study is

transactional information, which can be found in company

databases. Instead of directly analyzing real data sets,

randomly generated data sets will be used to test the pro-

posed model. Regardless of the type of data—real or syn-

thetic, the proposed model would provide the most

profitable clusters based on a profit model. Since the

quality of data-driven models can be hugely affected by the

quality of data, great efforts should be made for the

preparation of input data sets. To improve the quality of

data, data cleaning methods were adopted such as remov-

ing abnormality values and handling missing values (Wit-

ten and Frank 2005).

The basic assumptions are depicted in Fig. 5. The circles

represent customers’ requirements in terms of performance

of products, and the rectangle shows the centroid of the

cluster or the architecture. In the extreme case, seven

Fig. 3 Overall framework of

PDPFD

Fig. 4 Data structure example
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product architectures can be developed to satisfy all cus-

tomers. Or, only one product architecture (the current fig-

ure) can serve as a single medium to embrace all the

requirements if the customers can ignore the differences. It

is assumed that customers will buy the product that is

closer to their requirements in terms of the Euclidean dis-

tance. Basically, the performance of the product will

determine price and cost functions. For example, key per-

formances of notebook computers (e.g., memory, proces-

sors, screen size) determine notebook computer price and

cost. In addition, the deviation or distance between a pro-

duct architecture and customer requirements will affect a

purchase in terms of the discounted price, and the

increasing the number of architectures will increase the

fixed costs.

Under the aforementioned assumptions, the result of the

PDPFD framework can be used in a product design deci-

sion support system. No competing product is considered

so that the impact of product brand is not investigated in

this study. Well-defined market segments are not given so

customer preferences data should be clustered. If market

segments information is available, the market-driven

approach in Sect. 2.3 can be used with either a static profit

model (Kumar et al. 2009) or a predictive profit model

(Sects. 3.3, 3.4). Also, product performance in the cus-

tomer requirement space is limited to continuous variables.

The proposed model attempts to model the trend of cus-

tomer preferences in the market and use the trend and

prediction intervals for the product design decision support

system. Since the predicted model is designed to be used

for a short forecasting horizon (e.g., one-step-ahead short

prediction such as 3 and 6 months later), the evolution of a

product family and technology shifts are not considered.

3.3 Market value prediction for a profit model

In order to build a predictive profit model (Sect. 3.4.1),

market value prediction will be discussed with prediction

intervals (i.e., lower and upper bounds). Most of all,

significant factors for prices and costs should be identified.

Subject matter experts are helpful to manage the list of

candidate factors, and stepwise regression procedures can

be applied to find the significant factors in a stepwise

manner.

3.3.1 Market value prediction with regression coefficients

Prediction of product prices with regression coefficients

was proposed by Rutherford and Wilhelm (1999) for a

notebook computer (hereinafter RW model). Recently, this

model was revalidated with a more mature notebook

market (DesAutels and Berthon 2011). Though the RW

model was validated with a notebook computer, it was also

used to relate demand, price, and the features that comprise

a general product (Wilhelm et al. 2003; Damodaran and

Wilhelm 2005) and suggested as a possible prediction

method of product design (Kwak and Kim 2013).

The RW model consists of two phases. Phase 1 fits a

linear regression model to each time series (e.g., regression

model for each month for monthly data). Phase 2 uses

linear trend analysis of regression coefficients to capture a

trend over time. Then, future market values of target

products can be predicted with given features. From pub-

licly available data (notebook price data), the model pre-

dicted the rate of price erosion of a notebook computer up

to 7 months ahead within 10 % error. The RW model is

used for the base case of price prediction.

The main difference between the RW model and the

predictive model in PDPFD (hereinafter PDPFD model) is

that the PDPFD model uses exponential smoothing models

(Hyndman et al. 2008) at Phase 2, which is more flexible

(e.g., linear trend model can be considered one of expo-

nential smoothing models) and provides prediction inter-

vals for prediction uncertainty. The general form of the

regression model in this study is given in Eq. (1):

Pt ¼ b0t þ
X

i2A
bitait þ ht; for t ¼ 1; . . .; n ð1Þ

where Pt is the price or market value of a product at dis-

crete time t; b0t is the intercept, i is the index for levels or

alternatives of factors (product features), A is the set of

factors, bit is the regression coefficients of factor i, ait is the
measurement of factor i, and ht is the random error. Note

that the price is determined by product features, but the

discounted price considers one more factor, deviation in

Sect. 3.4. It does not need to be linear, but homogeneous

forms of regression models are required over time (i.e.,

linear, squared, and cubic). Linear regression is usually

adopted as a general model with the following assump-

tions: linear relationship between factors and response,

independent factors and random errors, and random error

with constant variance.

Fig. 5 Basic assumptions of PDPFD
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The next step is to trace the trend of regression coeffi-

cients bit, which is considered as customer preferences for

product features over time. Exponential smoothing based

on innovations state space models (Hyndman et al. 2008) is

proposed to model the time series. Equations (2) and (3)

show generalized state space equations for bit:

bit ¼ wðxiðt�1ÞÞ þ rðxiðt�1ÞÞ�it ð2Þ

xit ¼ f ðxiðt�1ÞÞ þ gðxiðt�1ÞÞ�it ð3Þ

where bit is the observed value at time t; xit is the state

vector which contains unobserved components such as the

level, trend, and seasonality of a time series, w() and r() are

scalar functions, f() and g() are the vector functions, and �it
is the white noise process with variance r2. The white

noise process has zero mean, constant and finite variance,

and uncorrelated values. For a succinct notation, index i 2
A [ f0g is used in Eqs. (2) and (3).

By combining Eqs. (1), (2), and (3), the following state

space-based price equations are formulated:

Pt ¼ wðx0ðt�1ÞÞ þ rðx0ðt�1ÞÞ�0t
� �

þ
X

i2A
wðxiðt�1ÞÞ þ rðxiðt�1ÞÞ�it
� �

ait þ ht
ð4Þ

xit ¼ f ðxiðt�1ÞÞ þ gðxiðt�1ÞÞ�it ð5Þ

Finally, estimation of the price at h time ahead is formu-

lated as follows:

P̂tþh ¼ b̂0ðtþhjtÞ þ
X

i2A
b̂iðtþhjtÞaiðtþhÞ ð6Þ

where b̂tþhjt represents the forecast of b̂tþh based on all the

data up to time t.

There are a total of 30 exponential smoothing models

classified based on trend, seasonality, and error in additive,

multiplicative or mixed ways. Hyndman et al. (2008)

provided details of the classifications. The automatic

forecasting method (Hyndman and Khandakar 2008) is

adopted to determine all the necessary parameters and the

best model. The first step is to apply all the 30 exponential

smoothing models, and estimate initial states and parame-

ters using maximum likelihood estimation based on the

innovations representation of the probability density func-

tion [refer to Eq. (8)]. The next step is to choose the best

model according to an information criterion: Akaike’s

information criterion (AIC), corrected Akaike’s informa-

tion criterion (AICc), or Bayesian information criterion

(BIC).

3.3.2 Prediction interval of market value

In the previous section, point forecasting of the time series

bit was discussed, which provides an average market value

of products. In order to consider the uncertainty in market

trends, prediction intervals in time series prediction are

used as well.

Three sources of uncertainty were identified in fore-

casting a future value (Hyndman et al. 2008): 1. selected

model, 2. estimated parameters and initial states, 3. future

innovations: �iðnþ1Þ; . . .; �iðnþhÞ. If it is assumed that the

uncertainties from the first and second sources can be

minimized by applying the automatic forecasting method

in Sect. 3.3.1, the uncertainty in the future innovations is

the only source that needs to be considered for prediction

intervals.

If the initial state value xi0 is known, the innovation �it is

a one-step-ahead prediction error. The conditional expec-

tation (Hyndman et al. 2008), which is also the one-step-

ahead point forecast b̂itjðt�1Þ, is given by:

E bitjbiðt�1Þ; . . .; bi1; bi0
� �

¼ E bitjxiðt�1Þ
� �

¼ b̂itjðt�1Þ

¼ wðxiðt�1ÞÞ ð7Þ

The probability density function (Hyndman et al. 2008) for

bi is also given as a function of innovations �it in Eq. (8):

Pðbijxi0Þ ¼
Yn

t¼1

P bitjxiðt�1Þ
� �

¼
Yn

t¼1

Pð�itÞ=rðxiðt�1ÞÞ ð8Þ

Then, the recursive relationships can be summarized as

follows:

b̂itjðt�1Þ ¼ wðxiðt�1ÞÞ ð9Þ

�it ¼ ðbit � b̂itjðt�1ÞÞ=rðxiðt�1ÞÞ ð10Þ

xit ¼ f ðxiðt�1ÞÞ þ gðxiðt�1ÞÞ�it ð11Þ

Therefore, h time-ahead prediction of bit requires only

�iðnþ1Þ; . . .; �iðnþhÞ.

In order to obtain prediction distributions, a simulation

approach (Hyndman et al. 2008) is adopted, which is

simple and can cover all the 30 exponential smoothing

models. The simulation approach simulates sample paths or

observations bit with initial states xit from the chosen

model. The remaining unknown values are future innova-

tions �it, and they can be obtained from a random number

generator with an appropriate distribution. An approximate

100ð1� aÞ% prediction interval for forecast horizon h is

given by the a
2
and 1� a

2
quantiles of biðtþhÞjt:

P̂
a
2

tþh ¼ b̂
a
2

0ðtþhjtÞ þ
X

i2A
b̂

a
2

iðtþhjtÞaiðtþhÞ ð12Þ

P̂
ð1�a

2
Þ

tþh ¼ b̂
ð1�a

2
Þ

0ðtþhjtÞ þ
X

i2A
b̂
ð1�a

2
Þ

iðtþhjtÞaiðtþhÞ ð13Þ

For example, 90 % of the prediction interval of a market

value is given by P̂0:05
tþh and P̂0:95

tþh . The prediction interval
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should be interpreted as the average prediction success

instead of any single case. In other words, 90 % of the time,

the real market value will fall within the bounds of intervals.

3.3.3 Performance test for predictive model in PDPFD

In this section, the prediction capabilities of the PDPFD

model and the RW model in Sect. 3.3.1 are compared. The

hypotheses are (1) the proposed model can provide a

similar level of predictive accuracy to the RW model when

data have a simple trend (trend of regression coefficients)

and (2) the proposed model can predict future values more

accurately than the RW model when data have complex

patterns (e.g., trend and cycle of regression coefficients).

Data sets with a simple trend and complex patterns were

generated randomly with the description of the generation

procedures. Each data set contains three factors and one

class variable (response or dependent variable) with 100

instances. The goal is to predict one-step-ahead class val-

ues using previous data sets. There were a total of 30 data

sets from t ¼ 1 to t ¼ 30, and the prediction results were

collected from t ¼ 11 to t ¼ 30 (i.e., 20 time periods).

As a performance measure, mean absolute error (MAE)

was selected as given by Eq. (14):

Mean absolute error ¼ jb1 � d1j þ � � � þ jbm � dmj
m

ð14Þ

where b1; b2; . . .; bm are the predicted class values and

d1; d2; . . .; dm are the actual class values.

3.3.3.1 Data with trend For the first hypothesis, the fol-

lowing data generation procedure was applied: (1) the value

of each factor was randomly chosen from 1 and 5 for each of

the 30 data sets, (2) the base regression coefficients (i.e.,

t ¼ 1) for three factors were randomly chosen between 30

and 40, (3) one of possible trends (increasing 1.5 or

decreasing 1.5) was randomly selected and applied to each

coefficient from t ¼ 2 to t ¼ 30, (4) the class values were

generated based on the values of the factors and the regres-

sion coefficients with some additional randomness, (5) the

regression analysis was applied to the generated data sets,

and (6) the identified values of regression coefficients were

used for predictive modeling. Due to the randomness in step

4, the trend of regression coefficients is not exactly 1.5.

The result of 20 MAEs (each MAE represents the average

of absolute errors for 100 instances) showed that the predic-

tion accuracies of the two models were almost identical

(Mann–Whitney test, a ¼ 0:05, p value ¼ 0:98). Both mod-

els predicted one-step-ahead values with less than 1 % error.

3.3.3.2 Data with trend and cycle For the second

hypothesis, the same data generation procedure was

applied except for (2) the base regression coefficients for

three factors were randomly chosen with cyclical patterns

(e.g., t ¼ 1 between 30 and 40, t ¼ 2 between 40 and 50,

t ¼ 3 between 50 and 60, t ¼ 4 between 60 and 70) and (3)

one of possible trends (increasing 1.5 or decreasing 1.5)

was randomly selected and applied to the regression

coefficients of each cycle from t ¼ 5 to t ¼ 30. As a result

of this procedure, similar patterns were repeated for every

four-time steps (i.e., cycles).

Table 1 shows the comparison result from both models.

Since the RW model depends only on the trend line for the

prediction, when data have complex patterns, the proposed

model provides a higher prediction accuracy (Mann–

Whitney test, a ¼ 0:05, p value ¼ 0).

The strength of the PDPFD model comes from the fact

that both linear and nonlinear forms of formulations can be

used, and the trend of coefficients can be captured in an

automatic way. Moreover, the PDPFD model can provide

prediction intervals (e.g., forecast value is 60.3 with 80 %

prediction interval of 59.8 and 60.8), which can show the

uncertainty of market trend (customer preferences) in

Sect. 3.3.2. These are characteristics that the RW model

cannot achieve.

Now, a general model of predicted market values is

formulated. In the next section, the model will be combined

with a profit model.

3.4 Individual product design stage

In the individual product stage, there are two levels:

enterprise level and engineering level (Wassenaar and

Chen 2003; Wassenaar et al. 2005; Chen et al. 2012). As

shown in Fig. 3, the market-driven target setting from

customer preference data is implemented at the enterprise

level, and engineering design with the target is realized at

the engineering level.

3.4.1 Enterprise level

At the enterprise level, the objective is to maximize the

expected profit while satisfying other constraints:

Maximize

PnþhðTkÞ ¼ DnþhðP�
nþh � CnþhÞ ð15Þ

Subject to:

gðTkÞ� 0; hðTkÞ ¼ 0 ð16Þ

where Pnþh is the economic profit at time nþ h (h time

ahead), Tk is the set of target values (i.e., product archi-

tectures with k number), Dnþh is the demand or number of

orders, P�
nþh is the discounted price or sale price, Cnþh is

the cost, g() are inequality constraints (e.g., range of k or

minimum profit), and h() are equality constraints (e.g.,

exact number of k).
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Equations (17) and (18) show the general models for the

discounted price and cost based on the assumptions in

Sect. 3.2:

P�
nþh ¼ f ðTk; dÞ ð17Þ

Cnþh ¼ f ðTk; kÞ ð18Þ

where f() is a scalar function, d is the deviation in Eq. (20),

which represents the impact of deviations between cus-

tomers’ requirements and product architectures, and k is the

number of architectures, which represents fixed costs to

increase the number of architectures. In order to apply

regression analysis, it is assumed that historical data have

k� 2. The data for the cost model at t ¼ nþ h are assumed

to be available to manufacturers, but the price model at

t ¼ nþ h should be predicted as discussed in Sect. 3.3. If

cost-related data at t ¼ nþ h are not available, the same

technique used in the price model should be applied.

To solve this problem with large-scale data, a two-step

approach is proposed. The proposed process starts from

identifying maximum k. Then, find each T2; . . .; Tk that

minimizes deviations from customer requirements. Next,

among T2; . . .; Tk, determine the best one by considering

profit prediction along with its prediction intervals at the

target time. Note that since this is product family design,

more than two product variants (T2) will be realized.

Step 1 set maximum k or number of architectures, and

calculate a deviation for all k centroids by applying k-

means clustering

Step 2 calculate profits for all k architectures with

prediction intervals, and set the target Tk that generates

maximum profit

The determination of maximum k in this algorithm depends

on designers. In general, it is almost impossible for

designers to decide the number from large-scale data.

However, the maximum number of architectures (k) can be

estimated not purely by data but jointly by manufacturer’s

capability and managerial decisions (e.g., the number of

production lines allow only a certain number of product

variants). If the maximum number k cannot be estimated,

k should be increased enough to the point where no more

improvement is possible in the case of a concave profit

function. Tucker et al. (2010) used the X-means clustering

algorithm (Pelleg and Moore 2000) to automatically select

the optimal k for product family architecture design, but the

maximum k should be provided by designers.

The k-means clustering algorithm (MacQueen 1967;

Witten and Frank 2005) is used since it is simple and

effective. The Euclidean distance assumption works well

with the k-means algorithm. The clustering algorithm

partitions a given data set into a fixed number of clusters k.

It aims at minimizing the objective function, which isT
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within cluster sum of squared errors (SSE) as shown in

Eq. (19):

f ¼
Xk

i¼1

X

x2Ci

kx� cik2 ð19Þ

where x ¼ ðx1; x2; . . .; xnÞ is a set of customer requirements,

Ci ¼ ðC1;C2; . . .;CkÞ is a set of clusters, and ci is the

centroid of cluster Ci (which is the arithmetic mean of

points in Ci). The deviation d is defined in Eq. (20) based

on Eq. (19):

d ¼
Pk

i¼1

P
x2Ci

kx� cik2

n
ð20Þ

The iterative process of the k-means algorithm starts by

specifying the number of clusters (k). Then, k points are

chosen randomly as cluster centers (ci) and all instances

(x) are assigned to the closest cluster centers in accordance

with the Euclidean distance. After the assignment, new cluster

centers are recalculated as means. This process is repeated

until the same instances are assigned to the same clusters.

The k-means clustering algorithm has some disadvan-

tages as follows. First, it is necessary to specify the number

of cluster k by designers. It was discussed above how to

constrain the k for product family architecture design.

Second, its performance can be significantly diminished

with high-dimensional data. New k-means clustering

algorithm with high-dimensional data was proposed by Sun

et al. (2012), and various dimensionality reduction tech-

niques were discussed in the literature such as principle

components analysis (Witten and Frank 2005), kernel trick

(Witten and Frank 2005), data compression (Chan et al.

2012), feature selection (Witten and Frank 2005; Tucker

et al. 2010). If data are really high-dimensional (e.g., DNA,

tweets), special clustering techniques should be applied

(Kriegel et al. 2009). Third, the algorithm converges to

local minima. Initial starting points can affect the result,

and repeating the algorithm with different starting points is

required. Note that these disadvantages are common in any

clustering algorithm.

3.4.2 Engineering level

The engineering-level problems can be stated as follows:

find a design solution that minimizes the deviations

between design targets from Sect. 3.4.1 and actual

responses while satisfying design constraints:

Minimize

fk þ kTk � Rk22 ð21Þ

Subject to:

gðTkÞ� 0; hðTkÞ ¼ 0 ð22Þ

where fk is the local product design objective function(s)

(e.g., minimize weights), Tk is the target vector cascaded

down from the enterprise level, and the R is the response

vector obtained from the analysis model r(x) (e.g., engi-

neering-level analytical models to calculate the response of

the targets).

3.5 Product family design stage

As discussed in Sect. 2.1, multiple-platform scale-based

product family design is studied with known common

parameters. The goal in this stage is to find clusters of

values under each common parameter for exploring the

possibility of multiple platforms while maintaining the

performances of products. The clustering is based on

similarity without the prior knowledge of cluster numbers.

There are a few clustering techniques to allow this task:

expectation maximization (EM) (Dempster et al. 1977;

Witten and Frank 2005; Do and Batzoglou 2008) and

X-means clustering (Pelleg and Moore 2000). Both of them

are extended versions of the k-means clustering method,

which is used in the individual product design stage. Based

on empirical test results for the product family design

stage, the EM algorithm is used in this stage.

The EM clustering algorithm is a generalization of

maximum likelihood estimation when the given data set is

incomplete or there are unobserved latent variables. The

goal is to estimate parameter ĥ that maximizes the log-

likelihood logPðx; z; hÞ, where x is the observed variable

and z is the latent variable. The EM iteration alternates

between the expectation (E) step, which calculates a

probability distribution over possible completions of

missing data with the initial guess of parameters, and the

maximization (M) step, which re-estimates the parameters

using these completions. Do and Batzoglou (2008) pro-

vided a simple coin-flipping example of the EM algorithm.

In the clustering task, the unobserved latent variables are

the assignments of observed values to clusters, and the

parameters are the means and covariance matrices of the

selected distributions representing each cluster. Therefore,

the E-step calculates the cluster probabilities with the

guessed parameters. The M-step calculates the parameters

(i.e., cluster means and covariances) by maximizing the

likelihood of the distributions.

Based on the result of the EM clustering, multiple values

can be allowed for each common parameter. Whether one

constant (i.e., single platform) or multiple constant values

(i.e., multiple platforms) are used for common parameters

depends on designers. Finally, the engineering-level opti-

mization problem should be re-solved with respect to

reduced design variables (i.e., scaling variables) with fixed

common parameters.
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4 Case study: universal motor family design

4.1 Background and data generation

The design of a universal motor family (Simpson et al.

2001) is used to demonstrate the effectiveness of the pro-

posed model and provide a comparison of the proposed

model and a clustering-based model (Tucker et al. 2010).

Universal electric motors are the most common components

in power tools (e.g., electric saws, drills, and drivers) and in

household appliances (e.g., blenders, vacuum cleaners, and

washing machines). Figure 6 shows the schematic of a

universal motor. There are eight design variable as inputs in

Table 2. A mathematical model provided by Simpson et al.

(2001) returns four performance outputs: power (P), torque

(T), mass (M), and efficiency (g) of motors as a function

these eight design variables. The objective of this case study

is designing a family of universal electric motors that

maximizes the expected profit for the next market trend

(customer preferences) based on accumulated data.

Three data sets (data set 1, data set 2 and data set 3)

were generated using the generation procedure in

Sect. 3.3.3 (data with trend) with manually generated new

orders. Figure 7 shows the new orders in data set 1 and

data set 2, which needs to be clustered. Each data set

contains twelve historical (6-month interval) transactional

data, one new order data, and one cost-related data. Each

datum has one million instances (i.e., a total of 14 million

instances for each data set). The embedded artificial trends

in data set 1 are shown in Table 3. For example, the

coefficients of efficiency have an increasing trend over

time in comparison with other factors, which indicates

customers pay more attention to the factor as time passes.

For the remaining sections, only data set 1 is used for

discussion except for the comparative study in Sect. 4.3.3.

4.2 Profit modeling

Two key factors (torque and efficiency) were assumed to

be identified for the estimation of discounted price and cost

functions. The discounted price and cost functions at one

step ahead (i.e., 6 months later) were formulated in

Eqs. (23) and (24):

Table 2 Design variables and

ranges of universal motors
Variable Definition Range

Nc Number of wire turns on the motor armature 100�Nc � 1500 turns

Ns Number of wire turns on each field pole 1�Ns � 500 turns

Awa Cross-sectional area of the armature wire 0:01�Awa � 1mm2

Awf Cross-sectional area of the field wire 0:01�Awf � 1mm2

r Radius of the motor 0:01� r� 0:1m

t Thickness of the motor 0:0005� t� 0:1m

I Current drawn by the motor 0:1� I� 6:0 A

L Stack length 0:0566� L� 10 cm

Fig. 6 Universal motor

schematic (Source: Simpson

et al. 2001)
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P̂�
nþh ¼ b0ðnþ1Þ þ b1ðnþ1Þ

Xk

i¼1

a1i þ b2ðnþ1Þ
Xk

i¼1

a2i þ b3ðnþ1Þd

ð23Þ

Ĉnþ1 ¼ c0ðnþ1Þ þ c1ðnþ1Þ
Xk

i¼1

a1i þ c2ðnþ1Þ
Xk

i¼1

a2i þ c3ðnþ1Þk

ð24Þ

where a1 is the torque, a2 is the efficiency of a universal

motor, d is the deviation in Eq. (20), and k is the number of

product architectures. Since the demand (Dnþ1) is given as

the customers’ new orders, the profit model at time nþ 1 is

formulated by Eq. (15). In order to maximize the profit,

both the deviation and the number of architectures should

be minimized. However, these two components are con-

flicting each other. When the number of architectures is

increased, the deviation is decreased accordingly or vice

versa. Both Eqs. (23) and (24) use the constant impact of

the deviation and the number of product architectures,

which can cause errors for estimation.

Table 3 shows the historical regression coefficients of

the discounted price fitted for historical data. The expo-

nential smoothing was applied to model each time series

(e.g., Torque from t ¼ 1 to t ¼ 12) using the forecast

package (Hyndman and Khandakar 2008) in R (R Devel-

opment Core Team 2008). The mean column of Table 4

contains the point estimation of one-step-ahead prediction

(i.e., t ¼ 13). The automatic forecasting method in

Sect. 3.3.1 provided required parameters and initial states.

Table 4 also shows lower (i.e., lo80 and lo95) and higher

(i.e., hi80 and hi95) bounds of 80 and 95 % prediction

intervals based on the simulation method in Sect. 3.3.2.

Instead of having the assumption of normally distributed

errors, re-sampled errors or bootstrapping techniques were

used to simulate future values. The cost model at t ¼ 13 is

provided in the right side of Table 4.

4.3 Individual product design stage

4.3.1 Enterprise level

It was assumed that the maximum number of architectures

was determined as 15 based on the manufacturer’s capa-

bility and production environment. Positions of product

architectures that minimize deviation errors for the one

million new orders were identified using the k-means

algorithm in Weka (Hall et al. 2009). Since the k-means

algorithm is the local optimizer, multiple seed values (10

different values) were used to get the k best clusters. Fig-

ure 7 shows the result with k ¼ 11 (left) and k ¼ 5 (right).

The profit model in Eq. (15) at t ¼ nþ 1 (i.e., t ¼ 13)

is now available. By utilizing Eqs. (6), (12), and (13),

profits for mean, 80, and 95 % prediction intervals can

be calculated as shown in Table 5. The top 4 ks were

selected according to their expected profits. Though the

selection of k is dependent on designers, the important

fact is that the prediction intervals give the uncertainties

of the predicted profit model. For example, T11 can have

the profit range from 0.47 to 7.59 million dollars, while

T15 can have the range from �1.16 to 8.48 million dol-

lars with a 80 % prediction interval. It was assumed that

the designer chose 11 architectures (T11) with the

expected profit of 4.03 million dollars. Then, the target

T11 in Fig. 7 (left) was cascaded down to the engineering

level.

4.3.2 Engineering level

The local objective function fk [from Eq. (21)] in this case

study is the mass function of a universal motor. A mathe-

matical universal motor model (Simpson et al. 2001) is

used as the analysis model r(x) in Eq. (21). Therefore, the

objective function is to minimize the mass of motors and
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Fig. 7 New orders in data set 1 (left) and data set 2 (right)
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deviations between the target T11 and the response R while

satisfying design constraints in Table 6.

The Generalized Reduced Gradient (GRG) algorithm in

Excel was used to solve this problem. Table 7 shows the

engineering-level optimization result with T11 from the

enterprise level (i.e., T and g column).

4.3.3 Comparative study

As shown in the previous sections, the proposed algorithm

combines the clustering-based and market-driven approa-

ches together for the target setting of the individual product

design stage. In this section, PDPFD and a previous clus-

tering-based approach (Tucker et al. 2010) are compared

to validate the performance of the proposed algorithm.

The clustering-based method (Tucker et al. 2010) used

the X-means clustering algorithm (Pelleg and Moore 2000)

to design aerodynamic particle separators. Out of 1000

data points, the X-means clustering found five cluster

centroids (i.e., architectures) based on the Bayesian infor-

mation criterion (BIC) (Pelleg and Moore 2000). From

these five architectures (with the maximum BIC score),

five product variants could be realized. However, the

clustering-based method calculated the production cost

after determining the five product architectures. In con-

trast, the proposed algorithm considers the expected profit

while simultaneously determining the product architec-

tures. By design, PDPFD can generate profits that are equal

to or greater than profits from the clustering-based method,

while BIC scores can be reduced.

Data sets 1, 2, 3 were utilized for this comparative

study. The X-means clustering algorithm in Weka (Hall

et al. 2009) was used with the minimum (2) and maximum

(15) number of architectures. Table 8 shows both results

from the proposed and clustering-based methods. When

PDPFD generated more architectures, the averages of

within cluster sum of squared errors (SSE) were lower than

that of the clustering-based method. The clustering-based

method generated lower expected profit at the end because

it maximized the BIC score first, and then the profit was

calculated sequentially with the determined number of

product architectures. The PDPFD algorithm explored all

the k values (e.g., k ¼ 2–15) and determined the best one

by comparing expected profits. This shows the benefit of

the combination of clustering-based and market-driven

combined approaches in product family architecture design

as introduced in Figs. 1 and 2.

4.4 Product family design stage

In this section, multiple-platform scale-based product

family design is conducted with known common parame-

ters from Simpson et al. (2001) [radius of the motor (r) andT
a
b
le

3
H
is
to
ry

o
f
re
g
re
ss
io
n
co
ef
fi
ci
en
ts

fo
r
d
is
co
u
n
te
d
p
ri
ce

t
¼

1
t
¼

2
t
¼

3
t
¼

4
t
¼

5
t
¼

6
t
¼

7
t
¼

8
t
¼

9
t
¼

1
0

t
¼

1
1

t
¼

1
2

T
o
rq
u
e

3
4
.9
9

3
4
.5
0

3
4
.2
0

3
4
.0
0

3
3
.5
0

3
3
.0
9

3
2
.7
9

3
2
.7
0

3
2
.4
9

3
2
.1
9

3
1
.7
9

3
1
.1
9

E
ffi
ci
en
cy

2
2
.0
1

2
2
.4
9

2
2
.8

2
3
.0
0

2
3
.5
0

2
3
.6
0

2
3
.6
0

2
3
.6
0

2
3
.8
0

2
4
.7
9

2
5
.4
9

2
6
.2
9

D
ev
ia
ti
o
n

-
1
8
.0
0

-
1
8
.1
0

-
1
8
.2
0

-
1
8
.3
.

-
1
8
.5
0

-
1
8
.7
0

-
1
9
.1
0

-
1
9
.1
0

-
1
9
.2
9

-
1
9
.4
9

-
1
9
.6
9

-
1
9
.8
9

In
te
rc
ep
t

-
0
.0
0
7
7

0
0

0
-
0
.0
0
0
2

-
0
.0
0
0
2

-
0
.0
0
0
5

-
0
.0
0
0
3

0
0
.0
0
0
1

0
.0
0
1
4

0
.0
0
0
1

Res Eng Design

123



thickness of the stator (t)]. Based on the result (i.e., 11

motors) from the individual product design stage, the EM

clustering in Weka (Hall et al. 2009) was applied to find

clusters within the two common parameters. Two clusters

were identified for the radius of the motor (r). Then, the

engineering-level optimization problem was resolved with

respect to the six free design variables with the two fixed

common parameters (i.e., r and t). Table 9 shows the result

of the optimization problem, which indicates two different

platforms based on r and t (i.e., 4.74/2.21 and 2.21/2.21)

shared by motors. The average weight of the motor family

was increased by 30.2 % (from 0.86 to 1.12 kg), but all

weight constrains were satisfied (i.e., less than 2 kg).

5 Closing remarks and future work

This article addresses how to determine optimal product

family architectures with customer preference data. The

proposed model expands clustering-based approaches to

Table 4 Regression coefficients for discounted price and cost at t ¼ 13

For discounted price Mean lo80 hi80 lo95 hi95 For cost Mean

Torque 30.86 30.68 31.03 30.59 31.13 Torque 26.0

Efficiency 27.07 26.63 27.50 26.40 27.73 Efficiency 24.8

Deviation -20.10 -20.14 -20.06 -20.16 -20.04 k 2.5

Intercept 0.00027 -0.00262 0.00316 -0.00414 0.00469 Intercept 0

Table 5 Architecture rankings

based on prediction intervals of

profit

Mean lo80 hi80 lo95 hi95

Rank The best 11/4.03 11/0.47 15/8.48 5/�1.01 15/11.04

[k/profit ($ MM)] Second 15/3.66 5/�0.15 11/7.59 11/�1.41 11/9.47

Third 13/2.68 7/�0.27 14/6.80 4/�1.48 14/9.14

Fourth 14/2.40 6/�0.72 13/6.79 7/�1.48 13/8.89

k is the number of architectures

Table 6 Design constraints for universal motors

Name Constraint

Magnetizing intensity (H) H� 5000 A � turns/m
Feasible geometry t\r

Power (P) P ¼ 300W

Mass (M) M� 2.0 kg

Table 7 Universal motor specifications and performance responses

Motor no. Product specifications (design variables) Responses

Nc Ns Awf ðmm2Þ Awa ðmm2Þ I ðAÞ r ðcmÞ t ðmmÞ L ðcmÞ T ðNmÞ g ð%Þ P ðWÞ M ðkgÞ

1 998 105 0.476 0.347 3.72 3.05 2.73 2.34 0.30 70 300 0.984

2 998 105 0.430 0.416 5.25 4.91 2.44 1.69 0.40 49.8 300 0.809

3 998 105 0.431 0.467 3.81 4.57 2.41 1.58 0.20 68.5 300 0.637

4 997 36 0.149 0.149 5.22 1.47 1.47 1.88 0.10 50.0 300 0.218

5 997 75 0.346 0.346 4.24 2.51 2.51 4.49 0.49 61.6 300 1.294

6 997 101 0.560 0.560 3.29 2.62 2.62 4.50 0.41 79.4 300 1.821

7 995 61 0.255 0.255 3.47 1.67 1.67 2.26 0.10 75.3 300 0.406

8 995 72 0.335 0.334 4.41 2.49 2.49 4.46 0.50 59.3 300 1.252

9 995 53 0.213 0.213 4.35 1.82 1.82 2.63 0.17 60.0 300 0.443

10 995 45 0.199 0.199 5.15 1.82 1.82 2.62 0.2 50.7 300 0.422

11 995 70 0.319 0.319 4.41 2.42 2.42 4.23 0.45 59.3 300 1.126
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incorporate a market-driven approach. The market-driven

approach provides a profit model in the near future to

determine the optimal position and number of product

architectures among product architecture candidates gen-

erated by the k-means clustering algorithm. An extended

market value prediction method is proposed to capture the

trend of customer preferences and uncertainties in predic-

tive modeling.

The predictive, data-driven product family design

(PDPFD) framework consists of the individual product

design stage and the product family design stage. The

individual design stage is a bi-level optimization model. At

the enterprise level, an updated market value prediction

method is suggested using the exponential smoothing

(Hyndman et al. 2008). In comparison with the original

model (Rutherford and Wilhelm 1999), the proposed pre-

dictive model not only showed the better prediction accu-

racy for data with complex patterns but also provided

prediction intervals which represent the uncertainties of

customer preferences. The k-means clustering algorithm is

suggested to capture the effect of deviations between pro-

duct architectures and customer requirements. Then, the

optimal position and number of product architectures can

be determined to maximize the expected profit without pre-

defined market segment information. With this market-

driven target, the engineering-level optimization problem

is formulated and solved to find designs which minimize

deviations from the target. The next stage is the product

family design stage where the EM clustering algorithm is

applied to find clusters within known common parameters

so that the possibility of multiple platforms can be

explored. Finally, the engineering-level optimization is

resolved with reduced design variables and common

parameters.

A universal electric motors design example is used to

demonstrate the implementation of the proposed frame-

work in a hypothetical market. The comparative study

shows that the PDPFD algorithm maximizes the expected

Table 8 Result of comparative study

k Average SSE BIC Cost ($ MM)/k Revenue ($ MM)/k Expected profit ($ MM)

Data set 1

PDPFD 11 0.003 -933 25.76 26.12 4.03

Clustering-based method 2 0.104 -907 25.17 24.83 -1.57

Data set 2

PDPFD 5 0.021 -934 28.56 28.65 0.42

Clustering-based method 4 0.032 -795 27.00 26.71 -1.10

Data set 3

PDPFD 2 0.096 -781 27.50 124.50 0.194

Clustering-based method 4 0.025 -716 30.25 78.44 0.192

k is the number of architectures

Table 9 Universal motor family design with fixed r and t

Motor no. Product specifications (design variables) Responses

Nc Ns Awf ðmm2Þ Awa ðmm2Þ I ðAÞ r ðcmÞ t ðmmÞ L ðcmÞ T ðNmÞ g ð%Þ P ðWÞ M ðkgÞ

1 1229 54 0.195 0.195 5.21 2.21 2.21 0.75 0.30 70 300 1.003

2 1227 116 0.475 0.475 5.25 4.74 2.21 1.31 0.40 49.8 300 1.975

3 1196 159 0.562 0.562 3.81 4.74 2.21 0.93 0.20 68.5 300 1.999

4 1437 54 0.220 0.220 5.21 2.21 2.21 0.64 0.10 50.0 300 0.346

5 1437 67 0.412 0.411 4.23 2.21 2.21 3.86 0.49 61.6 300 1.329

6 1050 86 0.597 0.597 3.29 2.21 2.21 5.69 0.41 79.4 300 1.894

7 1050 81 0.279 0.278 3.47 2.21 2.21 1.32 0.10 75.3 300 0.462

8 1050 64 0.354 0.353 4.41 2.21 2.21 5.18 0.50 59.3 300 1.262

9 1050 65 0.223 0.222 4.35 2.21 2.21 1.78 0.17 60.0 300 0.467

10 1050 55 0.208 0.207 5.15 2.21 2.21 1.77 0.2 50.7 300 0.443

11 1050 64 0.333 0.333 4.41 2.21 2.21 4.66 0.45 59.3 300 1.128
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profit, while clustering-based models do not consider

market so that less profit can be achieved.

The proposed algorithm starts with a maximum number

of architectures which is mainly dependent on the manu-

facturer’s capability and production condition. If k is too

big, then processing time for the algorithm will be very

long accordingly. More efficient ways should be explored

to find the lower and upper bound of the number of k in the

future. Furthermore, throughout this study, a scenario with

no competition was used. It will be interesting to consider

competing products for market-driven target setting as

possible future work. With competitors’ products, the

assumption of the closest product selection may be not

hold.
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