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Economic and physical considerations often lead to equilibrium problems in multidisci-
plinary design optimization (MDO), which can be captured by MDO problems with
complementarity constraints (MDO-CC)—a newly emerging class of problem. Due to the
ill-posedness associated with the complementarity constraints, many existing MDO meth-
ods may have numerical difficulties solving this class of problem. In this paper, we
propose a new decomposition algorithm for the MDO-CC based on the regularization
technique and inexact penalty decomposition. The algorithm is presented such that ex-
isting proofs can be extended, under certain assumptions, to show that it converges to
stationary points of the original problem and that it converges locally at a superlinear
rate. Numerical computation with an engineering design example and several analytical
example problems shows promising results with convergence to the all-in-one solution.
�DOI: 10.1115/1.4001206�
Introduction

The research area of multidisciplinary design optimization
MDO� has been intensively investigated during the last several
ecades. Particularly, rich contribution has been made concerning
wo fundamental issues in this research area: �1� the decomposi-
ion modeling of the multidisciplinary system and �2� the coordi-
ation among individual subsystems to efficiently achieve the
verall optimum. Previous research has addressed the core com-
onents of static, single multidisciplinary system design with
odels in systems engineering, nonlinear programming, and mul-

istage programming. Yet, the ever increasing intricacy and com-
lexity of engineering design often requires generalization to
ore complex models to facilitate the notion of dynamic design

nd operations, such as system-of-systems as well as competitive
gents.

Specifically, this paper considers a generalization of multilevel
DO in which its lower-level constraints represent the solution

ets of optimization or game-theoretic problems. Such settings
nclude, for example, �1� iterative and interactive design decision

aking processes captured by hierarchical frameworks or game
rotocols �1–4�; �2� multimode system design where a system
ay undergo multiple operating conditions represented as lower-

evel constraints, but not necessarily satisfy all of them, i.e.,
witch among different modes; and �3� biddings among multiple
eams or suppliers given upper-level system requirements �5,6�.
hese problems would fall under the setting of multidisciplinary
esign optimization problem with complementarity constraints
MDO-CC� �7�—a newly emerging class of problem, which re-
ates the MDO with the areas of mathematical program with
omplementarity constraints �MPCC� �8�.
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1.1 The Relevance of Complementarity Constraints to
Mechanical and Multidisciplinary Design Optimization. Al-
though few works are reported introducing complementarity con-
straints �CCs� into mechanical and multidisciplinary design opti-
mization, CC can actually be related to mechanical and
multidisciplinary design optimization in many scenarios. The
most straightforward scenario addresses complementarities in
physical feasibility. For example, complementarity can be used to
“switch” a system from one possible working mode, e.g., weather
condition, to another; it also models the cases in structural design,
where Hooke’s law is turned on/off beyond control of designer
�9�. While these scenarios could as well be handled by introducing
discrete variables, CC provides a useful alternative with poten-
tially less computation under continuous setting.

A potentially more significant application of CC in mechanical
and multiple disciplinary design optimizations involves the eco-
nomic aspects of design decision making. For instance, in many
settings, a designer may need to consider the competition among a
collection of convex agents �e.g., market players�. This can be
modeled by adding the sufficient first-order optimality conditions,
in the format of CCs, as design constraints, leading to an MPCC
or MDO-CC. Such a framework ensures that strategic concerns
can be better captured within the design phase and further enables
the promising research on integrating enterprise decision and en-
gineering design �5,10–13�.

The need to consider CC in mechanical and multidisciplinary
design is further motivated by the procedural or philosophical
aspects of design. Design decision making, especially product de-
sign in a complex enterprise context, may involve interaction
among different parties, e.g., collaborative design teams, manu-
facturing teams and maintenance teams. In some settings, these
parties are often competing for some resources, implying that the
problem could be modeled as a noncooperative game �2,14,15�. In
some settings, there is a definite notion of a leader and a follower;
in particular, a designer makes a decision subject to subsystems
competing for resources contingent on such a decision—a single-
leader multifollower game, referred to as a Stackelberg game
�3,1,16,17�. The equilibrium conditions of many games such as

Nash game, Stackelberg game, etc., can be reformulated into
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PCCs. For example, the equilibrium conditions of a Nash game,
f exists, can be captured by an aggregation of the optimality
onditions of all the competing agents, which can be represented
s a set of CCs. Due to this reason, MPCC has been traditionally
sed as a numerical solver of these games �8�. With the aid of CC,
hese procedural aspects of design processes can be captured and
ncluded in mechanical and multidisciplinary design optimization.

1.2 Literature Review. MDO problems can be solved di-
ectly with so-called all-in-one �AIO� approaches, which handle
ll the variables in a single optimization problem. The implemen-
ation of the AIO approach is straightforward; however, it may
ecome impractical, undesirable, or even impossible, as the com-
lexity of the problem increases. As an alternative to the AIO
pproaches, decomposition-based MDO methods have been in-
estigated extensively over the past few decades—for example,
onotonicity-based decomposition method �MBDM� �18�, con-

urrent subspace optimization �19�, bilevel integrated system syn-
hesis �20�, collaborative optimization �CO� �21,22�, the constraint

argin approach �23�, analytical target cascading �ATC� �24–26�,
enalty decomposition �PD� �27�, and augmented Lagrangian de-
omposition �ALD� �28�. Solving MDO problems with decompo-
ition approaches could be advantageous for many reasons: com-
utationally, it breaks the AIO problems into smaller subproblems
sually easier to solve; it also allows specialized algorithms to be
pplied to each subproblems. Organizationally, it keeps the indi-
idual disciplinary design optimizations as independent as pos-
ible with minimum amount of communication, making it pos-
ible to integrate existing disciplinary analysis codes at small
xpense.

Among all the variants of MDO, the quasi-separable MDO
roblem has gained particular attention during recent years. Many
f the above mentioned MDO methods �e.g., MBDM, CO, con-
traint margin approach, PD, and ALD� can be considered as the
uasi-separable MDO problem. In addition to these, Lu et al. �29�
roposed an ATC variant with local objectives under the context
f multimode design optimization. Among these approaches, PD,
TC, and ALD have been shown to have formulations whose
olutions satisfy the Karush–Kuhn–Tucker �KKT� conditions of
he original problems under certain assumptions. Additionally, it is
lso shown that the PD algorithms �inexact PD and exact PD�
onverge locally at a superlinear rate.

MPCCs represent an active research area, which is not well
onnected to the MDO. An example of the complementarity con-
traint is given as follows:

0 � F�x� � G�x� � 0 �1�

here x represents the variables and F and G are multifunctions
n Rp. Particularly, the symbol � indicates the following inequali-
ies:

F � 0, G � 0, G�x,y� � F�x,y� � 0 �2�

here the symbol � represents the Hadamard product, i.e., the
erm-by-term product operation between two vectors: a �b
�a1 , . . . ,an�T � �b1 , . . . ,bn�T= �a1b1 , . . . ,anbn�T.
In order to solve an MPCC, one intuitive approach is to refor-
ulate it into a nonlinear programming problem through replacing

he CCs �Eq. �1�� with its equivalent inequality constraints �Eq.
2��. However, the resulting nonlinear program �NLP� usually fails
o satisfy the linear independence constraint qualification �LICQ�
30� and the weaker Mangasarian–Fromovitz constraint qualifica-
ion �MFCQ� �30� at every feasible point. The failure of these
onstraint qualifications may have important negative numerical
mplications: the multiplier set may be unbounded; the active con-
traint normals may be linearly dependent; and a linear relaxation
f the reformulated nonlinear programming problem can become
nconsistent arbitrarily close to a solution to the MPCC �31�. As a
onsequence, existing nonlinear programming techniques may

ave difficulties solving this type of problem.
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Significant efforts have been made to investigate MPCC solu-
tion algorithm over the past few years. Fletcher et al. �31� fol-
lowed the reformulation approach and report promising results
using sequential quadratic programming �SQP� methods. Anitescu
�32� provided global convergence theory for SQP methods. Some
other methods solve a sequence of nonlinear programs with pe-
nalized complementarity constraints �33,34�. An important class
of methods, known as regularization methods, requires the solu-
tion of a sequence of regularized problems involving the relaxed
constraints G�x ,y� �F�x ,y�� tk with tk→0. These regularized
problems may be solved by interior methods or by SQP methods.
Along this line of research, Luo et al. �8�, Liu and Sun �35�, and
Raghunathan and Biegler �36� presented interior methods under
various assumptions; Shanbhag �37� proposed an interior point
method that converges to a second-order KKT point and extended
this method to stochastic MPCC using scenario-based decompo-
sition; and DeMiguel et al. �38� discussed a two-sided relaxation
scheme and provided local convergence theory for an interior
method coupled with such a relaxation scheme.

MDO-CCs are not frequently addressed in existing literature.
Lu et al. �7� recently presented an augmented Lagrangian decom-
position formulation for this problem to show the equivalence
between the AIO formulation and the decomposed formulation.
Additionally, Shanbhag �37� proposed a scenario-based decompo-
sition formulation for stochastic MPCCs, and then solved it as an
AIO problem with a parallel algorithm. In this paper, we propose
a new decomposition approach for the MDO-CC based on the
regularization technique and inexact penalty decomposition �IPD�.
While the IPD is established in existing MDO literature, this is the
first time it is adapted to successfully solve the MDO-CC. The
proposed algorithm is derived such that existing convergence
proofs of the IPD method can be extended, under certain assump-
tions, to show convergence to strongly-stationary points of the
original AIO problem. Additionally, superlinear convergence rate
can be derived from standard results associated with the master
and subproblem solvers. The proposed method is applied to two
classes of examples and preliminary numerical results are
encouraging.

The remainder of this paper is organized as follows. In Sec. 2,
the formulation of the MDO-CC is stated, followed by its regu-
larized inexact penalty decomposition �RIPD� formulation. Addi-
tionally, the connection between stationary solutions of the two
formulations is established. A solution algorithm based on the
RIPD formulation is presented in Sec. 3 and numerical results of
the proposed algorithm are presented and discussed in Sec. 4.

2 Formulation
In this section, the formulations of the MDO-CC are presented.

We follow the flow of formulation manipulation shown in Fig. 1:
the MDO-CC is first stated in its AIO formulation; then its CCs
are regularized, resulting in a regularized AIO formulation; after
that, we relax the regularized AIO formulation by introducing
local copies of the linking variables and penalizing the inconsis-
tency among these copies, deriving a regularized, relaxed AIO

Fig. 1 The flow of formulation manipulation and stationary
point mapping
formulation; finally, this formulation is decomposed into a bilevel
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egularized IPD formulation. In addition to the formulation ma-
ipulation, the connection among solutions of these formulations
s also presented.

2.1 AIO Formulation. We consider a general quasi-separable
DO-CC with n subsystems, whose AIO formulation is given as

ollows:

PMDO-CC-AIO: min
y,x1,. . .,xn

�
i=1

n

f i�xi,y�

subject to gi�xi,y� � 0, ∀ i = 1, . . . ,n
�3�

hi�xi,y� = 0, ∀ i = 1, . . . ,n

0 � Gi�xi,y� � Fi�xi,y� � 0, ∀ i = 1, . . . ,n

here y represents a vector of linking variables shared by all the
subsystems; and xi represents the vector of local variables only

elevant to subsystem i �i=1, . . . ,n�. The problem is quasi-
eparable in that the system objective is the summation of the
ubsystem objectives f i, and that the subsystem objectives and
onstraints gi, hi, Gi, and Fi are associated exclusively with sub-
ystem i, depending only on the linking variables and the sub-
ystem’s local variables. The local complementarity constraint ��
ymbol� indicates that Gi and Fi are non-negative and that
Gi� j�Fi� j =0 �shown in Fig. 2�a�� for j=1, . . . , p, where Gi ,Fi are
ultifunctions in Rp. We assume throughout this paper that the

bjective and constraint functions are three times continuously-
ifferentiable. This assumption is required to derive the proposed
IPD algorithm �refer to Theorem 1�.
In order to avoid the numerical difficulties associated with the

Cs, we follow the regularization methods �39�, which replace a
C with non-negative constraints on both of the two components
nd an inequality constraint on the product of the two. Addition-
lly, the constraint on component product is further relaxed by a
ositive scalar so that the relaxed problem satisfies the LICQ. The
egularization scheme is illustrated in Fig. 2�a� shows the feasible
pace of the original CC, which coincides with the two non-
egative axes; such a feasible space fail to satisfy the MFCQ in
hat none of its points satisfies inequalities �Eq. �2�� strictly �40�.
igure 2�b� shows the feasible space of the regularized con-
traints, which resides between the two non-negative axes and the
olid curve; its strict feasible region is nonempty for any positive
calar tk. The regularized AIO formulation is as follows:

PMDO-RegAIO�tk�: min
y,x1,. . .,xn

�
i=1

n

f i�xi,y�

subject to gi�xi,y� � 0, ∀ i = 1, . . . ,n

hi�xi,y� = 0, ∀ i = 1, . . . ,n
�4�

Gi�xi,y� � 0, ∀ i = 1, . . . ,n

ig. 2 The feasible space of 0� †Gi‡j� †Fi‡j�0 and its regular-
zation †7‡ „a and b…
Fi�xi,y� � 0, ∀ i = 1, . . . ,n

ournal of Mechanical Design
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Gi�xi,y� � Fi�xi,y� � tke, ∀ i = 1, . . . ,n

where the symbol � represents the Hadamard product, i.e., the
term-by-term product operation between two vectors: a �b
= �a1 , . . . ,an�T � �b1 , . . . ,bn�T= �a1b1 , . . . ,anbn�T. Additionally, �tk�
is a positive descent sequence that converges to zero, and e is a
vector of unit elements. Note that as �tk� approaches zero, the
feasible space of PMDO-RegAIO�tk� generally converges to that of
the original AIO problem in Eq. �3�.

2.2 Bilevel Decomposed Formulation. Implementation of
the AIO problem is straightforward in general, but obtaining its
solution is usually computationally difficult due to the problem
size. An alternative to the AIO approach is the decomposition-
based approaches �41,42�, where the original AIO problem is de-
composed into a set of interrelated subproblems and solved
through an iterative process of subproblem optimization and co-
ordination among them. Using decomposition-based approach can
be advantageous, as it reduces the size of individual problems by
decomposition while limiting the communication among subprob-
lems only to where necessary via linking variables.

As an initial step to decomposing �Eq. �4��, we introduce du-
plicated copies of the linking variables yi in each subsystem i to
separate local constraints. Also, additional constraints are intro-
duced to ensure consistency among yi’s. The resulted regularized,
modified AIO problem is given as follows:

PMDO-ModAIO�tk�: min
y,y1,. . .,yn,x1,. . .,xn

�
i=1

n

f i�xi,yi�

subject to gi�xi,yi� � 0, ∀ i = 1, . . . ,n

hi�xi,yi� = 0, ∀ i = 1, . . . ,n

Gi�xi,yi� � 0, ∀ i = 1, . . . ,n �5�

Fi�xi,yi� � 0, ∀ i = 1, . . . ,n

Gi�xi,yi� � Fi�xi,yi� � tke, ∀ i = 1, . . . ,n

ci = y − yi = 0, ∀ i = 1, . . . ,n

On the basis of Eq. �5�, a second manipulation is applied so that
the consistency constraints given as ci=0 are relaxed, and the
corresponding violations are penalized in the format of a quadratic
penalty function. As a result of these manipulations, the regular-
ized, relaxed AIO formulation �or simply relaxed AIO for conve-
nience� is given as follows:

PMDO-RelAIO�tk,�m�: min
y,y1,. . .,yn,x1,. . .,xn

�
i=1

n

�f i�xi,yi� + �m�y − yi�2
2�

subject to gi�xi,yi� � 0, ∀ i = 1, . . . ,n

hi�xi,yi� = 0, ∀ i = 1, . . . ,n
�6�

Gi�xi,yi� � 0, ∀ i = 1, . . . ,n

Fi�xi,yi� � 0, ∀ i = 1, . . . ,n

Gi�xi,yi� � Fi�xi,yi� � tke, ∀ i = 1, . . . ,n

where �m denotes the penalty parameter satisfying ���→�.
We note that Eq. �6� consists of n subsystems coupled through

the linking variables y only. Therefore, it can be decomposed into
a bilevel program through holding y constant at each subsystem.
The resulted subsystems are presented in Eq. �8�. In addition, the
optimal subsystem objective values under given y setting are used

to define a master problem, as shown in Eq. �7�
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PRIPD-Master�tk,�m�:min
y

F��y� = �
i=1

n

Fi
��y� �7�

here Fi
��y� is the optimal subsystem objective value given y

PRIPD-Sub,i�tk,�m�:Fi
��y� = min

yi,xi

f i�xi,yi� + �m�y − yi�2
2

subject to gi�xi,yi� � 0

hi�xi,yi� = 0
�8�

Gi�xi,yi� � 0

Fi�xi,yi� � 0

Gi�xi,yi� � Fi�xi,yi� � tke

We call the above formulation �Eqs. �7� and �8�� the RIPD
ormulation to be differentiated from the IPD formulation �27�.

2.3 Connection Among the Proposed Formulations. This
ubsection is devoted to mapping the stationarity conditions of the
IPD formulation �Eqs. �7� and �8�� to those of the AIO formula-

ion �Eq. �3��. We employ the regularized, relaxed AIO problem
Eq. �6�� and the regularized AIO problem �Eq. �4�� as intermedi-
te steps to facilitate this mapping. The flow of stationary point
apping is indicated by the dotted and dashed arrows in Fig. 1: an

ccumulative stationary point of Eqs. �7� and �8� is first mapped to
stationary point of Eq. �6� through Theorem 1; then a limit of

hese stationary points is mapped to a stationary point of Eq. �4�
ollowing Theorem 2; finally a limit of solutions to Eq. �4� is
apped to a strongly-stationary point of Eq. �3� through Theorem

. While these theorems are already well-established in their re-
pective areas of research, our contribution is to show that they
an be combined in the context of a new type of problem, namely,
he MDO-CC, to effectively derive convergence results. Before
roceeding, we provide definitions for several concepts related to
PCC.
Definition 1 �strong-stationarity conditions� for an MPCC

PMPCC:min
x

f�x�

subject to g�x� � 0

h�x� = 0
�9�

F�x� − s = 0

G�x� − t = 0

0 � s � t � 0

point z	�x ,s , t� is strongly-stationary if and only if there exist
ultipliers �� ,� ,�1 ,�2 ,�1 ,�2� satisfying


�f

0

0
� +


�g 0 0

�h 0 0

�F − I 0

�G − I 0
�

T



�

�

�1

�2

� − 
 0

�1

�2
� = 0

0 � � � − g�x� � 0

h�x� = 0

F�x� − s = 0

G�x� − t = 0 �10�
0 � s � t � 0
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��1� j�si� j = 0, ∀ j

��2� j�ti� j = 0, ∀ j

if �s� j = �t� j = 0, then ��1� j � 0 and ��2� j � 0, ∀ j

where � denotes the Jacobian for a vector function.
Let A1 ,A2� �1, . . . ,m� be the sets of indices corresponding to

s and t respectively, which satisfy A1�A2= �1, . . . ,m�. These sets
can be employed to construct a relaxed nonlinear program �re-
laxed NLP�

PMPCC-RNLP:min
x

f�x�

subject to g�x� � 0

h�x� = 0

G�x� − s = 0

F�x� − t = 0 �11�

�s� j = 0, ∀ j � A2
�

�t� j = 0, ∀ j � A1
�

�s� j � 0, ∀ j � A1

�t� j � 0, ∀ j � A2

The notion of strong-stationarity is intimately related to the
relaxed NLP in that a point is a strongly-stationary solution of Eq.
�9� if and only if it is a stationary point of Eq. �11� �see Proposi-
tion 4.1 of Ref. �31��.

In addition to the stationarity conditions, we also provide the
definition of the following constraint qualification.

Definition 2 �MPCC-LICQ�. The MPCC (Eq. (9)) satisfies
MPCC linear independence constraint qualification if the relaxed
NLP (Eq. (11)) satisfies LICQ.

The stationarity conditions of the RIPD formulation �Eqs. �7�
and �8�� are mapped to those of the regularized, relaxed AIO
formulation �Eq. �6�� following Theorems 4.9 and 4.8 of Ref. �27�.
We provide these theorems in the context of the MDO-CC.

Theorem 1. Assume that fi, gi, hi, Gi, and Fi are three times
continuous differentiable. For any tk, �m, let �y�tk ,�m� ,y1�tk ,
�m� , . . . ,yn�tk ,�m� ,x1�tk ,�m� , . . . ,xn�tk ,�m�� be a local minimizer
of Eqs. (7) and (8), which satisfies LICQ, strict complemen-
tarity slackness (SCS) and second-order sufficient conditions
(SOSCs) for Eq. (8). Then �y�tk ,�m�y1�tk ,�m� , . . . ,yn�tk ,�m� ,
x1�tk ,�m� , . . . ,xn�tk ,�m�� is a first-order KKT point of Eq. (6) sat-
isfying LICQ.

If, in addition, SCS and SOSC hold at �y�tk ,�m� ,y1�tk ,
�m� , . . . ,yn�tk ,�m� ,x1�tk ,�m� , . . . ,xn�tk ,�m�� for Eq. (6), then the
objective of Eq. (7) F��y� is locally twice continuously-
differentiable with respect to y in a neighborhood of y�tk ,�m�.
Also, y�tk ,�m� is a minimizer of F��y� satisfying SOSC.

The next theorem maps the limit of stationary solutions of the
relaxed AIO formulation �Eq. �6�� to a stationary solution of the
regularized AIO formulation �Eq. �4��. It follows from well-
established results of penalty methods, for example, Theorem 17.1
in Ref. �30� and Theorem 17.2 in Ref. �43�.

Theorem 2. For any tk, let �y�tk ,�� ,y1�tk ,�� , . . . ,yn�tk ,�� ,x1 ,
�tk ,�� , . . . ,xn�tk ,��m� be a sequence of KKT points of Eq. (6) cor-
responding to a sequence of penalty parameters ���m with �m

→�. If LICQ holds for each KKT point in the sequence, then any
of its limit point �y�tk� ,y1�tk� , . . . ,yn�tk� ,x1�tk� , . . . ,xn�tk��, at

which LICQ holds for the equality constraints y�tk�=yi�tk� and all
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he active local constraints is a KKT point of Eq. (4) satisfying
ICQ.
The following theorem maps the limit of stationary solutions

f the regularized AIO formulation �Eq. �4�� to a strongly-
tationary solution of the AIO formulation �Eq. �3��. It follows
heorem 3.1 of Ref. �39�. The original theorem derived so-called
-stationarity1 for Eq. �3�, but it also made clear that the
-stationarity is equivalent to strong-stationarity under
PCC-LICQ.
Theorem 3. Let �y�t� ,x1�t� , . . . ,xn�t��k be a sequence of KKT

oints of Eq. (4) corresponding to a sequence of regularization
arameters �t�k with tk→0. Assume that the sequence converges
o �y ,x1 , . . . ,xn�, which satisfies MPCC-LICQ. Let

Ii
0 = �j��Gi�xi�tk�,y�tk��� j�Fi�xi�tk�,y�tk��� j

= tk for infinitely many�

Ii
G = �j��Gi�xi,y�� j = 0�

Ii
F = �j��Fi�xi,y�� j = 0�

hen �y ,x1 , . . . ,xn� is a strongly-stationary point of Eq. (3) if and
nly if for each subsystem i, the limits of the Lagrange multipliers
orresponding to �Gi� j and �Fi� j, ��i,1� j and ��i,2� j are zero for j
uch that j� Ii

G� Ii
F� Ii

0.
As a summary of the results presented in this subsection, we

resent the following proposition, which establishes the connec-
ion between stationarity conditions of the RIPD problems �Eqs.
5� and �6�� to those of the AIO problem �Eq. �1��.

Proposition 1. Assume that f i, gi, hi, Gi, and Fi are three times
ontinuous differentiable. For any tk, let

(i) �y�tk ,�� ,y1�tk ,�� , . . . ,yn�tk ,�� ,x1�tk ,�� , . . . ,xn�tk ,��m� be
a sequence of local minimizers of Eqs. (7) and (8) corre-
sponding to a sequence of penalty parameters ���m with
�m→� such that LICQ, SCS, and SOSC are satisfied for
Eq. (8) at any point of the sequence.

(ii) �y�tk� ,y1�tk� , . . . ,yn�tk� ,x1�tk� , . . . ,xn�tk�� be a limit point
of �y�tk ,��y1�tk ,�� , . . . ,yn�tk ,�� ,x1�tk ,�� , . . . ,xn�tk ,���m

at which LICQ holds for the equality constraints y�tk ,��
=yi�tk ,�� and all the active local constraints.

If the sequence of �y�tk� ,x1�tk� , . . . ,xn�tk�� corresponding to
a sequence of regularization parameters �t�k with tk→0
converges to �y ,x1 , . . . ,xn�, which satisfies the assumptions
of Theorem 3, then �y ,x1 , . . . ,xn� is a strongly-stationary
point of Eq. (3).

Proof. For any tk, Theorem 1 indicates that any point in
y�tk ,��y1�tk ,�� , . . . ,yn�tk ,�� ,x1�tk ,�� , . . . ,xn�tk ,���m is a KKT
oint of Eq. �6� satisfying LICQ. Therefore, Theorem 2 guarantees
hat �y�tk� ,y1�tk� , . . . ,yn�tk� ,x1�tk� , . . . ,xn�tk�� is a KKT point of
q. �4� under regularization parameter tk. Following this result,

y ,x1 , . . . ,xn� is a strongly-stationary point of Eq. �3� due to
heorem 3.

Solution Algorithm
In this section, we present a solution algorithm for the
DO-CC following the regularization approach and the IPD
ethod.
The framework of the presented bilevel decomposed algorithm

s given as a nested loop shown in Fig. 3: in the outer loop, the
egularization approach is followed so that the regularization pa-
ameter tk is gradually reduced; in the inner loop, the IPD algo-
ithm is applied to solve the regularized problem under each tk

1A feasible point x of an MPCC is Bouligard stationary �B-stationary� if it is a
ocal minimizer of the linearized MPCC, which is obtained by linearizing all data

unctions at point x �40�.
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setting specified by the outer loop. Specifically, the IPD algorithm
increases the penalty parameter �m for the deviation terms at the
beginning of each inner loop iteration, and solves the master prob-
lem �Eq. �7�� under the specified �m value. This procedure directly
follows Proposition 1. Therefore, it converges to the solution if
the assumptions of Proposition 1 are satisfied.

While supported theoretically by Proposition 1, the nested loop
framework may incur intensive computation due to costly inner
loop iterations. In order to address this, an alternative strategy
could be to employ looser inner loop termination criteria. Several
approaches has been proposed to reduce the number of inner loop
iterations in the context of MDO: Tosserams et al. �44� proposed
to follow alternate direction methods of multipliers to reduce the
number of inner loop iteration in ATC approach. Additionally, Li
et al. �45� presented a truncated diagonal quadratic approximation
of the ATC, which is closely related to Tosserams’ method. Note
that the nested loop computation framework in these papers refers
to the decomposition algorithm for MDO problems, which is ac-
tually the inner loop of our presented nested loop framework. As
an extreme case of reducing the inner loop iterations, we present a
single loop procedure in which the inner loop is terminated after
just a single RIPD problem solution. In other words, the regular-
ization parameter and the penalty parameter are updated together.
The analytical convergence property of the presented single loop
procedure is not yet established. However, numerical computation
shows promising results with convergence to AIO solutions. The
procedure of the single loop framework is presented in Fig. 4; and
the results are presented in Sec. 4.

Following the RIPD formulation presented in Sec. 2, the master
problem is given as an unconstrained optimization problem. In
general, the master objective of a nested bilevel program is non-
smooth, while in the RIPD formulation, Theorem 1 shows that the
master objective function F��y� is locally twice continuously-
differentiable with respect to y. Therefore, the master problem can
be solved by algorithms utilizing derivatives. In practice, we solve
the master problem following a modified Broyden-Fletcher-

Fig. 3 The nested loop framework of the regularized IPD
algorithm

Fig. 4 The single loop framework of the regularized IPD

algorithm
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oldfarb-Shanno �BFGS� method with backtracking line search
46�, which builds an approximation of F��y�’s second derivative
sing its first gradient. A pseudocode for the algorithm is provided
or the reader in Fig. 5; a numerical example is also included in
he Appendix to illustrate the approach.

Note that the gradient of F��y� is calculated with �27�

�F��y� = 2�m�
i=1

n

�y − yi� �12�

lthough the gradient in Eq. �12� looks as if it is derived through
irectly differentiating F��y� with respect to y, it actually consid-
rs the implicit functions such as yi�y� and xi�y�, etc. The reader is
eferred to Ref. �27� for its detailed derivation.

3.1 The Convergence Procedure and Local Convergence
nalysis. The convergence procedure of the nested loop frame-
ork is illustrated in Figs. 6�a� and 6�b�. For demonstration pur-
oses, we consider a simple example with two linking variables
= �y1 ,y2�T and present the convergence procedure of the linking
ariables only.

In Figs. 6�a� and 6�b�, the shaded dots, denoted as
y�t0� ,y�t1� , . . . ,y�tk� , . . .�, represent a sequence of stationary so-
utions to Eq. �4�, corresponding to �t�k. For each adjacent pair of
oints in this sequence y�tk� and y�tk+1�, the inner loop takes a
equence of stationary solutions to Eq. �6�, corresponding to ���m,
o move from y�tk� to y�tk+1�. This sequence, denoted as
y�tk+1 ,�0� ,y�tk+1 ,�1� , . . . ,y�tk+1 ,�m� , . . .�, is illustrated by the
ray dots in Fig. 6�a�.

Fig. 5 The BFGS procedure
ig. 6 An illustration of the convergence procedure „a and b…
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Furthermore, for each adjacent pair of points in the sequence of
stationary solutions to Eq. �6� y�tk+1 ,�m� and y�tk+1 ,�m+1�, the
BFGS algorithm takes a sequence of steps to converge from
y�tk+1 ,�m� to y�tk+1 ,�m+1�. This sequence, denoted as �y�0�

��tk+1 ,�m+1� ,y�1��tk+1 ,�m+1� , . . . ,y�s��tk+1 ,�m+1� , . . .�, is illus-
trated by the solid dots in Fig. 6�b�.

As discussed previously, we employ the BFGS method and the
SQP as the master and subproblem optimizer respectively. Fol-
lowing this setting, standard local convergence property can be
expected. For any tk, we note that given certain assumptions, the
implicit function theorem and Theorem 6 of Ref. �43� indicate that
there exists a locally unique twice continuously-differentiable tra-
jectory of stationary solutions to Eq. �6� y�tk ,��, which converges
to y�tk�. The following theorem shows that for each parameter
setting �regularization and penalty parameter combined�, the
BFGS master problem solver converges locally at a superlinear
rate to a stationary solution to Eq. �6�. Also presented is a restate-
ment of the superlinear local convergence of the SQP solver for
each subproblem.

Theorem 4. Assume that the assumptions of Proposition 1 hold.
If for any tk, �y�tk� ,x1�tk� , . . . ,xn�tk�� satisfies LICQ, SCS, and
SOSC, then there exists �̄�tk��0 satisfying for each ���̄�tk�

1. There exists �1�tk��0 such that the BFGS iterates, �y�0�

��tk ,�� ,y�1��tk ,�� , . . . ,y�s��tk ,�� , . . .�, converge locally and
superlinearly to y�tk ,��, if �y�0��tk ,��−y�tk ,�����1�tk�.

2. Assume that �xi�y�s��tk ,��� ,yi�y�s��tk ,���� is a KKT solution
satisfying the LICQ and SOSC corresponding to y�s��tk ,��,
there exists �2�tk��0 such that the SQP iterates converge
locally and superlinearly to �xi�y�s��tk ,��� ,yi�y�s��tk ,����, if
the SQP starts sufficiently close to �xi�y�s��tk ,��� ,yi�y�s�

��tk ,����, and �y�s��tk ,��−y�tk ,�����2�tk,�.

4 Numerical Results
In this section, we present a numerical study to illustrate the

proposed regularized inexact penalty decomposition algorithm.
Two classes of problems are tested: a variant of the Golinski’s
problem, and SQPECgen, a problem set of quasi-separable qua-
dratic programs with complementarity constraints �QPCCs�. In
addition, another simple numerical example is presented in the
Appendix to provide step-by-step demonstration of the proposed
approach.

4.1 A Variant of Golinski’s Problem. Golinski’s speed re-
ducer design problem �47� is originally presented as a regular
MDO problem. Its AIO formulation is given as follows:

GolAIO: min
x1,. . .,x7

f�x1, . . . ,x7� = 0.7854x1x2
2�3.3333x3

2 + 14.9334x3

− 43.0934� − 1.5079x1�x6
2 + x7

2�

+ 7.477�x6
3 + x7

3� + 0.7854�x4x6
2 + x5x7

2�

subject to g1 =
1

110x6
3
�745x4

x2x3
�2

+ 1.69 · 107 − 1 � 0

g2 =
1

87x7
3
�745x5

x2x3
�2

+ 1.575 · 1081 � 0

g3 =
1.5x6 + 1.9

x4
− 1 � 0, g4 =

1.1x7 + 1.9

x5
− 1 � 0, g5

=
27

x1x2
2x3

− 1 � 0

�13�

g6 =
397.5

x1x2x2 − 1 � 0, g7 =
1.93x4

3

x2x3x4 − 1 � 0, g8 =
1.93x5

3

x2x3x4 − 1 � 0

2 3 6 7
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g9 =
x2x3

40
− 1 � 0, g10 =

5x2

x1
− 1 � 0, g11 =

x1

12x2
− 1 � 0

2.6 � x1 � 3.6, 0.7 � x2 � 0.8, 17 � x3 � 28, 7.3 � x4

� 8.3

7.3 � x5 � 8.3, 2.9 � x6 � 3.9, 5.0 � x7 � 5.5

The objective of this problem is to minimize the volume of a
peed reducer subjected to stress, deflection, and geometric con-
traints. The design variables are the dimensions of the gear itself
x1 ,x2 ,x3� and both the shafts �x4, x6, and x5, x7�. Note that x3 is
riginally presented as an integer variable. However, it is relaxed
s a continuous variable here for demonstration purpose. A sche-
atic of the speed reducer is presented in Fig. 7 with its design

ariables labeled.
While the Golinski’s problem was not originally presented with

omplementarity constraints, one of its variant is employed here
or demonstration purpose. We note that g1 and g2 in Eq. �13�
pecifies the maximum torsional stresses in both shafts. In this
tudy, two additional constraints g12 and g13 are included to rep-
esent the maximum acceptable strain energies in the shafts. The
wo constraints are given as follows:

g12 =
x4

7.93128 � 105x6
4��745

x4

x2x3
�2

+ 1.69 � 107� − 1 � 0

�14�

g13 =
x5

1.91724 � 106x7
4��745

x5

x2x3
�2

+ 1.69 � 107� − 1 � 0

�15�
We set the maximum stress constraints and the maximum strain

nergy constraints complementary to each other for each shaft �as
hown in Eq. �16��, thereby introducing complementarity

0 � − g1 � − g12 � 0
�16�

0 � − g2 � − g13 � 0

By introducing local copies of the linking variables �x1 ,x2 ,x3�,
hich are labeled with superscripts �1�, �2�, and �3� in the three

Fig. 7 A schematic of the Golinski’s speed reducer

Table 1 Numerical results of the decomp

pproach Initial solution

IO �3.6,0.8,28,8.3,8.3,3.9,5.5�T �3.500
ested loop RIPD �3.6,0.8,28,8.3,8.3,3.9,5.5�T �3.500
ingle loop RIPD �3.6,0.8,28,8.3,8.3,3.9,5.5�T �3.500
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subproblems, respectively, the original AIO problem can be de-
composed into the RIPD formulation consisting the following
master �Eq. �17�� and subproblems �Eqs. �18�–�20��:

Golmaster: min
x1

U,x2
U,x3

U
F��x1

U,x2
U,x3

U� = �
i=1

n

Fi
��x1

U,x2
U,x3

U� �17�

F1
��x1

U,x2
U,x3

U� = min
x1

�1�,x2
�1�,x3

�1�,x4,x6

− 1.5079x1
�1�x6

2 + 7.477x6
3

+ 0.7854x4x6
2 + �m�

i=1

3

�x1
U − xi

�1��2

�18�
subject to �g1,g3,g7,g12�T � 0, g1g12 � tk

F2
��x1

U,x2
U,x3

U� = min
x1

�2�,x2
�2�,x3

�2�,x5,x7

− 1.5079x1
�2�x7

2 + 7.477x7
3

+ 0.7854x5x7
2 + �m�

i=1

3

�xi
U − xi

�2��2

�19�
subject to �g2,g4,g8,g13�T � 0, g2g13 � tk

F3
��x1

U,x2
U,x3

U� = min
x1

�3�,x2
�3�,x3

�3�
0.7854x1

�3��x2
�3��2�3.3333�x3

�3��2

+ 14.9334x3
�3� − 43.0934� + �m�

i=1

3

�xi
U − xi

�3��2

�20�
subject to �g5,g6,g9,g10,g11�T � 0

We applied the proposed RIPD algorithm to the MDO-CC vari-
ant of Golinski’s problem. Both the nested loop and the single
loop framework are tested. The numerical results are presented in
Table 1 with a comparison between the RIPD solutions and the
numerical AIO solution. It can be noted from Table 1 that both the
nested loop RIPD approach and the single loop RIPD approach
obtained solutions identical to the numerical AIO solution to
MDO-CC variant of the Golinski’s problem. All of the three so-
lutions are generated with KNITRO

® solver in the MATLAB
® envi-

ronment. The corresponding parameter settings are t0=0.05, 	t
=8, �0=1, 	�=2, �inner=1�10−6, �outer=1�10−6, and �grad=5
�10−4. The active constraints at the solution are g2, g4, g10, and
g12.

4.2 SQPECgen: A Test Problem Set for Quasi-Separable
Quadratic Programs With Complementarity Constraints.
SQPECgen �37� is a quasi-separable QPCC test problem set based
on a QPCC generator proposed by Jiang and Ralph �48�. It fea-
tures quasi-separable structure, which differentiates linking vari-
ables from local variables. Specifically, the problems it generates
possess a quadratic objective function with polyhedral first level
�relevant to linking variables only� constraints and complementa-
rity second level �relevant to both linking and local variables�
constraints, as shown below

tion approach for the MDO-CC: Golinski’s

Final solution

,0.700000,17.000000,7.300000,7.670397,3.542421,5.245814�T

,0.700004,17.000000,7.300000,7.670396,3.542421,5.245814�T

,0.700005,17.000000,7.300000,7.670396,3.542421,5.245814�T
osi

000
013
029
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SQPECgen: min
z=�yT,x1

T, . . . ,xn
T�T

1
2zT


Pyy Pyx1
¯ Pyxn

Pyx1

T Px1x1
¯

] �

Pyxn

T Pxnxn

�z

+

c

d1

]

dn

�
T

z

subject to Gy � a �21�

0 � xi � Niy + Mixi + qi � 0, ∀ i = 1, . . . ,n

Following the technique presented in Sec. 2, the decomposition
ormulations of the above QPCC are:

SQPECgenRIPD min
y

F��y� = �
i=1

n+1

Fi
��y� �22�

Fi
��y� = min

zi=��yi�
T,xi

T�T

1
2zi

T� 0 Pyxi

Pyxi

T Pxixi

�zi + � 0

di
�T

zi + �m�y − yi�2
2

subject to xi � 0, Niyi
L + Mixi + qi � 0 �23�

�xi� j�Niyi
L + Mixi + qi� j � tk

Fn+1
� �y� = min

yn+1

1
2 �yn+1�TPyyyn+1 + cTyn+1 + �m�y − yi�2

2

�24�
subject to Gyn+1 � a

4.2.1 The Nested Loop Framework. In order to demonstrate
he effectiveness of the proposed nested loop framework �Fig. 3�,
e have tested several QPCC problems from the SQPECgen
roblem set �Eq. �21��. In this study, the nested loop framework is
ollowed to solve five test problems, each of which has five link-
ng variables and five subsystems. Additionally, each of the sub-
ystem has five local variables.

able 2 Numerical results of the nested loop RIPD approach:
QPECgen with five subsystems

Case No. Number of function evaluations

1 1.72�106

2 2.33�106

3 1.12�106

4 3.60�106

5 4.26�106

Fig. 8 Numerical behavior of the R

mented Lagrangian decomposition †7‡
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Table 2 presents the numerical results obtained through the
RIPD algorithms. Each number in the table is the average number
of function evaluations needed to converge from five random ini-
tial solutions. We note that for each initial solution the nested loop
framework converged to a solution identical to a numerical AIO
solution for all the problems tested. All of these solutions are
generated with KNITRO

® 5.0 solver in MATLAB
® 7.2. The corre-

sponding parameter settings are t0=0.05, 	t=4, �0=1, 	�=2,
�inner=1�10−6, �outer=5�10−5, and �grad=5�10−3.

4.2.2 The Single Loop Framework. Although our numerical
results show that the nested loop framework converges to AIO
solutions, it usually incurs intensive computation due to excessive
inner loop iterations, as shown in Table 2. In this subsection, we
demonstrate the performance of the more practical single loop
framework �Fig. 4� with a set of quasi-separable QPCC problems
with varying number of subsystems. For each of the test problems,
the single loop RIPD converged to a solution identical to a nu-
merical AIO solution from five randomly generated initial solu-
tions. The corresponding number of function evaluations �the av-
erage of two test problems with the same number of subsystems,
five runs for each test problem� is plotted in Fig. 8. Additionally,
the same metric corresponding to the ALD method �7�, an existing
approach, is also presented for a comparison purpose. Both algo-
rithms converge to the same solution for each quasi-separable
QPCC in the test problem set.

In Fig. 8, each data dot represents the average number of func-
tion evaluations for two test problems under the same subsystem
settings. Here, each test problem has five linking variables, and
each subsystem has five local variables. As shown in Fig. 8, the
single loop RIPD approach takes approximately 14 times as many
function evaluations to solve the 40-subsystem case as it takes for
the five-subsystem case. The increase in computation cost results
from both the increase in subsystem number and the increase in
major iterations needed to generate a consistent solution. This
ratio is approximately 75 for the case of ALD algorithm.

Both algorithms in this study are implemented with KNITRO
®

solver in the MATLAB
® environment. The corresponding parameter

for the five- and ten-subsystem cases are t0=0.05, 	t=4, �0=1,
	�=2, �inner=1�10−6, �outer=1�10−5, and �grad=1�10−3; for
the 20–40-subsystem case t0=0.05, 	t=3, �0=1, 	�=1.5, �inner

=1�10−6, �outer=1�10−5, and �grad=1�10−3. Additionally, the
deviation tolerance of the ALD is set as 1�10−6, the same value
as �inner in RIPD.

In addition to SQPECgen problems with varying number of
subsystem, we have also tested the single loop framework on a set
of SQPECgen problems with fixed number of linking variables
and varying number local variables. Specifically, each problem
tested has two linking variables and ten subsystems with the num-
ber of local variables per subsystem ranging from 30 to 50. The

approach compared with the aug-
IPD
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umerical results are presented such that the computational cost of
he single loop RIPD is compared with that of the regularized AIO
pproach to show the effect of decomposition.

Table 3 shows the numerical results obtained through both the
IPD and the regularized AIO approach. The numbers presented
re the average numbers of function evaluations and computation
imes of five runs, for each of which the two algorithms obtained

same solution from a randomly generated initial solution. Ac-
ording to numerical results, the computation time of the RIPD
lgorithm is approximately four times as much as that of the regu-
arized AIO approach for the 30-local variable case; while the
ormer is approximately a third of the latter for the 50-local vari-
ble case. This indicates that the computational effect of decom-
osition is more remarkable when the coupling among the sub-
ystems are looser. Additionally, we notice in Table 3 that function
valuations of the regularized AIO problem take more time than
hose of the RIPD subproblems due to the difference in dimen-
ionality. Note that the RIPD computation time is measured under
erial implementation, i.e., the computation time is the summation
f all the subsystem computation time. If the RIPD is imple-
ented in parallel, the computation time will be much shorter.
Both algorithms in this study are implemented with KNITRO

®

olver in the MATLAB
® environment. The corresponding parameter

etting is t0=0.05, 	t=3, �0=1, 	�=1.5, �inner=1�10−6, �outer
1�10−5, and �grad=1�10−3. The same t0, 	t, and �outer are ap-
lied to the regularized AIO approach.

4.2.3 Recommendation for Parameter Selection. Finally, we
rovide some recommendations for the selection of 	t and 	�.
ccording to our numerical experience, both the nested loop and

he single loop framework converge with a 	t� �1,10�. For the
QPECgen test problems, 2�	t�4 is recommended to speedup
onvergence.

Additionally, our numerical experience indicates that the nested
oop framework converges with a 	�� �1,4�, while 2�	��3 is
ecommended to speedup convergence. On the other hand, the
ingle loop framework appears to be more sensitive to 	� setting.

	�� �1,2.5� worked for all the problems we tested; and 1
	��2 is recommended for convergence speed.

Conclusion and Future Work
The presence of complementarity constraints in a MDO prob-

Table 3 Numerical results of the single loop
of local variables per subsystem

Number of local variables per subsystem

Number of function evaluations: RIPD
Computation time: RIPD�s�
Number of function evaluations:
regularized AIO
Computation time: regularized AIO�s�
em poses a numerical challenge, which existing MDO ap-
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proaches usually could not handle. This paper presents a nested
decomposition formulation for the MDO-CC based on regulariza-
tion and inexact penalty decomposition technique. As an impor-
tant contribution, we showed that existing theories could be
adapted to map a limit point of stationary solutions of the param-
eterized decomposition formulation to a strongly-stationary solu-
tion of the AIO formulation. Following this result, a solution al-
gorithms for the MDO-CC were proposed with potential
implementations of a nested loop framework and a single loop
framework. Additionally, we showed that superlinear convergence
rate could be expected for the proposed algorithm following the
local convergence results of standard master and subproblem solv-
ers. Numerical results showed that both the two presented algo-
rithms converge to solutions identical to the AIO solutions.

Future work includes an in-depth study regarding the differ-
ences between nested loop versus single loop solution process.
Currently, the numerical results show that the single loop cases
converge to AIO solutions, which is identical to the nested loop
case. An extensive study will be useful in terms of comparing
efficiency and robustness �from ill-conditioning� of solution pro-
cess, which can provide further guidelines for setting 	 coeffi-
cients.
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Appendix: Illustrative Example
A simple numerical example is provided in this Appendix, for

illustrative purpose. The example problem is a quasi-separable
QPCC with two linking variables and two subsystems with two
local variables each. The formulation of the problem is given as

D approach: SQPECgen with varying number

30 40 50

8�105 7.05�105 8.44�105

2�103 4.36�103 5.14�103

2�105 2.50�105 5.57�105

3�103 9.25�103 17.77�103
follows:
min
z=�yT,x1

T,x2
T�T

1
2zT


2.0009 − 0.3070 − 0.0916 0.6246 − 0.0916 0.6246

− 0.3070 0.8408 − 0.7418 − 0.7411 − 0.7418 − 0.7411

− 0.0916 − 0.7418 2.6815 − 0.1375 0 0

0.6246 − 0.7411 − 0.1375 2.6477 0 0

− 0.0916 − 0.7418 0 0 2.6815 − 0.1375

0.6246 − 0.7411 0 0 − 0.1375 2.6477

�z +

− 1.4486

2.9529

1.4343

− 0.8599

− 2.2608

− 3.5206

�
T

z

RIP

6.2
3.0

0.
0.8
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subject to �0.1243 − 0.1101�y � 0.2481
�A1�

0 � x1 � �− 0.0136 − 0.0067

− 0.5144 − 0.6580
�y + �4.2209 2.2445

2.2445 1.5515
�x1

+ �− 5.9478

− 3.3817
� � 0

0 � x2 � �− 0.0136 − 0.0067

− 0.5144 − 0.6580
�y + �4.2209 2.2445

2.2445 1.5515
�x2

+ �− 2.8053

− 1.6865
� � 0

Following the technique presented in Sec. 2, the decomposition
ormulations of the above QPCC are:

min
y

F��y� = �
i=1

n+1

Fi
��y� �A2�

F1
��y�

= min
z1=�y1

T,x1
T�T

1
2z1

T

0 0 − 0.0916 0.6246

0 0 − 0.7418 − 0.7411

− 0.0916 − 0.7418 2.6815 − 0.1375

0.6246 − 0.7411 − 0.1375 2.6477
�z1

+

0

0

1.4343

− 0.8599
�

T

z1 + �m�y − y1�2
2

subject to x1 � 0,�− 0.0136 − 0.0067

− 0.5144 − 0.6580
�y

+ �4.2209 2.2445

2.2445 1.5515
�x1 + �− 5.9478

− 3.3817
� � 0

�A3�

diag�x1���− 0.0136 − 0.0067

− 0.5144 − 0.6580
�y + �4.2209 2.2445

2.2445 1.5515
�x1

+ �− 5.9478

− 3.3817
�� � �tk

tk
�

2
��y�

= min
z1=�y2

T,x2
T�T

1
2z2

T

0 0 − 0.0916 0.6246

0 0 − 0.7418 − 0.7411

− 0.0916 − 0.7418 2.6815 − 0.1375

0.6246 − 0.7411 − 0.1375 2.6477
�z1

+

0

0

− 2.2608

− 3.5206
�

T

z2 + �m�y − y2�2
2

subject to x2 � 0,�− 0.0136 − 0.0067

− 0.5144 − 0.6580
�y

+ �4.2209 2.2445

2.2445 1.5515
�x2 + �− 5.9478

− 3.3817
� � 0
�A4�
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diag�x2���− 0.0136 − 0.0067

− 0.5144 − 0.6580
�y + �4.2209 2.2445

2.2445 1.5515
�x2

+ �− 2.8053

− 1.6865
�� � �tk

tk
�

F3
��y� = min

y3

1
2 �y3�T� 2.0009 − 0.3070

− 0.3070 0.8408
�y3 + �− 1.4486

2.9529
�y3

+ �m�y − y3�2
2

�A5�
subject to �0.1243 − 0.1101 �y3 � 0.2481

We take an initial solution of zT= �−2,2 ,0 ,0 ,0 ,0�, with an ini-
tial t1 of 0.05 and an initial �1 of 1. Following step 1.1 of Fig. 5,
we start with solving the three subsystems �Eqs. �A3�–�A5��, re-
spectively, which yields:

�y1
�0��t1,�1�

x1
�0��t1,�1�

� =

− 2.6223

2.7791

0.4257

1.8731
�, �y2

�0��t1,�1�
x2

�0��t1,�1�
�

=

− 2.0992

3.2007

0.0414

1.7076
�, y3

�0��t1,�1� = �− 0.6145

0.3021
�

Following Eqs. �A2� and �12�, the master objective and its gra-
dient are:

F��y�0��t1,�1�� = − 3.0511,�F��y�0��t1,�1�� = �− 1.3280

− 0.5640
�

With the initial Hessian approximation B0 as the identity ma-
trix, this generates a descent search direction �step 1.2 of Fig. 5�


y�0��t1,�1� = �1.3280

0.5640
�

Following step 1.3 of Fig. 5, let ỹ=y�0��t1 ,�1�+�0
y�0��t1 ,�1�
= �−0.6720,2.5640�T be a tentative solution �where �0=1�, the
corresponding subsystem solutions and master objective are:

�ỹ1�ỹ,t1,�1�
x̃1�ỹ,t1,�1�

� =

− 2.0427

2.5272

0.3225

2.1077
�, �ỹ2�ỹ,t1,�1�

x̃2�ỹ,t1,�1�
�

=

− 1.1900

3.6050

0.0224

2.2036
�, ỹ3�ỹ,t1,�1� = �0.0856

0.7749
�

F��ỹ� = − 2.1618

Assume that �=0.05, since F��ỹ�−F��y�0��t1 ,�1����,
�F��y�0��t1 ,�1��T
y�0��t1 ,�1� is not satisfied, the tentative solu-
tion ỹ is rejected, and the step length �0 is diminished by a half,
i.e., �0=0.5. With this updated step length, a new tentative solu-
tion is calculated, given as ỹ= �−1.3360,2.2820�T. The corre-
sponding subsystem solutions and master objective are calculated

as follows:
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�ỹ1�ỹ,t1,�1�
x̃1�ỹ,t1,�1�

� =

− 2.3260

2.6545

0.3854

1.9768
�, �ỹ2�ỹ,t1,�1�

x̃2�ỹ,t1,�1�
�

=

− 1.6475

3.3991

0.0293

1.9566
�, ỹ3�ỹ,t1,�1� = �− 0.2645

0.5385
�

F��ỹ� = − 2.1618

Because F��ỹ�−F��y�1��t1 ,�1�����F��y�1��t1 ,�1��T
y�1�

�t1 ,�1�, the tentative solution ỹ is accepted

y�1��t1,�1� = ỹ

�y1
�1��t1,�1�

x1
�1��t1,�1�

� = �ỹ1�ỹ,t1,�1�
x̃1�ỹ,t1,�1�

�, �y2
�1��t1,�1�

x2
�1��t1,�1�

�
= �ỹ2�ỹ,t1,�1�

x̃2�ỹ,t1,�1�
�, y3

�1��t1,�1� = ỹ3�ỹ,t1,�1�

Additionally, the Hessian approximation is updated following
teps 1.4 and 1.5 of Fig. 5.

�End of first iteration�

�F��y�1��t1,�1�� = �0.4599

0.5075
�, s0 = �0.6640

0.2820
�, r0

= �2.7458

1.4783
�, H1 = �3.5186 1.4523

1.4523 1.8228
�

This finishes the first iteration of the BFGS algorithm. Since its
ermination criterion is not met, the BFGS continues into the next
teration.

The second iteration follows a similar fashion: a descent search
irection is first calculated with the master gradient and the Hes-
ian approximation


y�1��t1,�1� = �− 0.0235

− 0.2597
�

Let ỹ=y�1��t1 ,�1�+�0
y�1��t1 ,�1�= �−1.3595,2.0223�T be a
entative solution �where �0=1�, the corresponding subsystem so-
utions and master objective are

�ỹ1�ỹ,t1,�1�
x̃1�ỹ,t1,�1�

� =

− 2.2173

2.5082

0.4316

1.8839
�, �ỹ2�ỹ,t1,�1�

x̃2�ỹ,t1,�1�
�

=

− 1.6214

3.1129

0.0341

1.8379
�, ỹ3�ỹ,t1,�1� = �− 0.2905

0.3529
�

F��ỹ� = − 3.4574

Since F��ỹ�−F��y�1��t1 ,�1�����F��y�1��t1 ,�1��T
y�1��t1 ,�1�,
he tentative solution ỹ is accepted

y�2��t1,�1� = ỹ

�y1
�2��t1,�1�

x1
�2��t1,�1�

� = �ỹ1�ỹ,t1,�1�
x̃1�ỹ,t1,�1�

�, �y2
�2��t1,�1�

x2
�2��t1,�1�

�
= �ỹ2�ỹ,t1,�1�

˜ ˜
�, y3

�2��t1,�1� = ỹ3�ỹ,t1,�1�

x2�y,t1,�1�
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Additionally, the Hessian approximation is updated.
�End of second iteration�

�F��y�2��t1,�1�� = �0.1012

0.1856
�, s1 = �− 0.0235

− 0.2597
�, r1

= �− 0.3748

− 0.4998
�, H2 = �3.0492 1.1673

1.1673 1.8189
�

The algorithm will keep iterating until the BFGS termination
criterion is met. If, for example, �grad=1�10−3, it terminates at
�−1.2737,1.7736�T after the sixth iterations. At this point, the pen-
alty parameter � will be updated if the nested framework is fol-
lowed, while if the single loop framework is followed, not only
the penalty parameter � but also the regularization parameter t
will be updated. After this update, the algorithm will start a new
set of BFGS iterations in a similar fashion as presented above.
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