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The usage modeling in life cycle assessment (LCA) is rarely discussed despite the
magnitude of environmental impact from the usage stage. In this paper, the usage model-
ing technique, predictive usage mining for life cycle assessment (PUMLCA) algorithm, is
proposed as an alternative of the conventional constant rate method. By modeling usage
patterns as trend, seasonality, and level from a time series of usage information, predictive
LCA can be conducted in a real time horizon, which can provide more accurate estimation
of environmental impact. Large-scale sensor data of product operation is suggested as a
source of data for the proposed method to mine usage patterns and build a usage model
for LCA. The PUMLCA algorithm can provide a similar level of prediction accuracy to the
constant rate method when data is constant, and the higher prediction accuracy when data
has complex patterns. In order to mine important usage patterns more effectively, a new
automatic segmentation algorithm is developed based on change point analysis. The
PUMLCA algorithm can also handle missing and abnormal values from large-scale sensor
data, identify seasonality, and formulate predictive LCA equations for current and new
machines. Finally, the LCA of agricultural machinery demonstrates the proposed approach
and highlights its benefits and limitations.

� 2015 Elsevier Ltd. All rights reserved.
Introduction and background

Life cycle assessment (LCA) is an analytical assessment tool to quantify environmental impact of a product or system
(Rebitzer et al., 2004; Finnveden et al., 2009). The potential environmental impact can be generated from all the stages of
a product, i.e., manufacturing, usage, maintenance, and end-of-life. The LCA approach provides a holistic and systematic
way to manage data associated with the product of interest. With the popularity of sustainable design and environmentally
conscious design, LCA studies have reported various materials, electronics, automobiles, and complex systems (Kwak, 2012).

The LCA framework (Guinée, 2002; Reap et al., 2008a) consists of goal and scope definition, inventory analysis (LCI, life
cycle inventory), impact assessment (LCIA, life cycle impact assessment) and interpretation. The goal and scope definition is
the phase that defines the purpose, the systems or products, and the level of sophistication. The LCI is the phase that defines
the system boundaries and the flow diagrams with unit processes (e.g., extraction of oil, refining, production of electricity,
etc.). The main result from the LCI is the inventory table which quantifies inputs (e.g., raw material, land, energy, etc.) and
outputs (e.g., pollutants such as CO2; SO2;NOx, etc.) to the environment. The LCIA is the phase that translates the inventory
table into relevant impact categories (e.g., carcinogens, climate change, acidification, etc.) and quantifies the environmental
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impact using weighting and normalization. The interpretation is the phase that evaluates the results from the LCIA and
makes recommendations of the LCA study.

Although the LCA approach is mature and has become a widely used method in various industries, it is usually static in
that time is not considered in the assessment with the implicit assumption of steady-state processes. The necessity of con-
sidering time in LCA was discussed in literature. Reap et al. (2008b) provided insightful reviews on the temporal aspects of
LCA. Temporal factors such as different rates of emissions over time and seasonal variation of their impacts can influence the
accuracy of LCA. Levasseur et al. (2010) showed that the inconsistency in time frames can affect LCA results significantly.
Memary et al. (2012) demonstrated that changes of environmental impact over time are useful information for assessing
future technology and options. Collet et al. (2014) presented a method to find the most critical flows of information based
on dynamic inventory data (i.e., LCI level) and sensitivity analysis. In addition to the aspect of time, spatial variation is
another contributor that can significantly affect the accuracy of LCA (Reap et al., 2008b). Local, regional and continental
differences can cause different results of LCA.

In this paper, a new perspective of dynamic LCA is proposed to consider time in LCA, especially the modeling of the usage
stage. Among the life cycle stages of a product, the manufacturing stage, which is the chosen stage in the majority of LCA
studies, can be considered as a one-time event, i.e., time-independent event. Although the dynamic inventory approach
(Collet et al., 2014) attempted to relax this (e.g., the impact from material x or process y can be changed over time), the
inventory data is considered constant in this study. On the other hand, the usage stage (with maintenance and end-of-life
stages) is a time-dependent event, which means the lifespan of a product has a large impact on LCA. Many studies showed
that the majority of environmental impact can come from the usage stage over life cycle (e.g., more than 60% for cars
(Sullivan and Cobas-Flores, 2001), more than 80% for off-load machinery (product of interest in this paper) (Kwak et al.,
2012), and 80–90% for some small electronics (Telenko and Seepersad, 2014)). Therefore, how to model the usage stage in
LCA is critical and one of the main questions of this work.

Even though the importance of the usage modeling has been recognized among LCA researchers and practitioners, it is
rarely discussed in literature. LCA studies in literature usually utilized a constant rate (Lee et al., 2000; Choi et al., 2006;
Kwak et al., 2012; Kwak and Kim, 2013; Li et al., 2013) of usage information (hereinafter constant rate method) with the
implicit assumption of steady-state processes (e.g., average fuel consumption rate in kg/h, fixed operating hours per month,
etc.). This method is simple and easy to apply, but if data has complex patterns (e.g., trend, seasonality and segments), the
prediction accuracy of the constant rate method can be significantly reduced. The constant rate method only allows us to
calculate life cycle impact in a nominal time horizon, e.g., 10 years as a whole instead from October 2014 to December
2024. This can be an important issue to policy makers and manufacturers when they want to estimate the environmental
impact of the future. Fig. 1 shows the expected result from both the proposed model and the constant rate method.
Based on the available historical data, a usage (e.g., diesel fuel consumption) model should be built and used for predicting
the future usage profile. It can be seen in Section ‘Numerical prediction tests for PUMLCA’ that the constant rate method can
misinterpret the upcoming usage profile while the proposed model is expected to provide higher prediction accuracy with
lower variance predictions.

One exception is Telenko and Seepersad (2014) who proposed a usage context modeling technique in LCA using Bayesian
network models. The usage context includes human, situational, and product variables. Based on a pre-defined probabilistic
network of relevant usage patterns (e.g., weather ? usage of electric kettle with probability of x), a usage profile and its vari-
ability can be modeled as a form of distribution. However, in order to apply this approach, causal relationships among dif-
ferent usage contexts should be known, which is expressed as a probabilistic network. For example, the usage of agricultural
machinery (e.g., crop sprayer, harvester, nutrient applicator, etc.) can be affected by a various usage context (e.g., weather,
soil, experience of farmers, price of fuel and crops, machine deterioration). It will be difficult to correlate these variables with
specific usage information (e.g., diesel fuel consumption and operating hours). Furthermore, Telenko and Seepersad (2014)
did not consider time in LCA.

Alternatively, this study proposes a time series usage modeling technique, predictive usage mining for life cycle assess-
ment (PUMLCA), as shown in Fig. 2. Companies such as Caterpillar (PRODUCT Link™) and John Deere (JDLink™) have
Fig. 1. A prediction scenario of PUMLCA and constant rate method.



Fig. 2. Overview of PUMLCA.

J. Ma, H.M. Kim / Transportation Research Part D 38 (2015) 125–143 127
developed telematics systems for their machinery and have been gathering operational data in real time for various pur-
poses: asset utilization monitoring, location tracking, fleet management, machine health prognostics, etc. These
large-scale time-stamped data sets are the sources of data for the PUMLCA algorithm. Usually, the whole picture of a usage
profile is not available for currently deploying machines or new machines. Based on the limited past information, future
usage patterns should be predicted for LCA as shown in Fig. 1. Time series analysis is useful when future values should
be predicted while explanatory variables are difficult to identify. By modeling time series usage information, not only can
future usage patterns be obtained, but also variability (i.e., prediction interval). For example, Ma et al. (2014) and Ma and
Kim (2014) showed that a trend of valuable information (demand and price) could be mined and reflected in system design
using the combination of time series analysis and data mining.

Time series usage information, however, frequently shows highly seasonal activity periods with periodic no-activity or
very low-activity periods. For example, combine harvesters are mainly operated during the harvest season with almost zero
usage during the off-season. A similar pattern can be observed from seasonally used machinery. This pattern is also wide-
spread for time series data of highly seasonal items such as Christmas, Easter and Halloween products. When analyzing
and modeling this kind of time series data, a segmentation can help to find usage patterns more clearly by grouping distinct
periods (e.g., off-season period) (Jackson, 2010). Segmentation algorithms (Keogh et al., 2004) were proposed for various
(A) (B)

Fig. 3. Time series segmentation (A) piecewise linear representation (redrawn from Keogh et al. (2004)) and (B) segmentation for prediction (redrawn from
Hyndman and Athanasopoulos (2013)).
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applications such as voice recognition, handwriting recognition, clustering, and classification. However, not much has been
reported in the LCA literature whether segmentation algorithms can improve predictive capability. Fig. 3 shows the example.
The usual time series segmentation (A (Electrocardiogram) in the figure, piecewise linear representation) is used for the
approximation of a time series but the proposed segmentation (B (Monthly sales for a souvenir shop in Queensland,
Australia) in the figure, dotted lines for predicted values) is designed to improve the predictive capability of time series
modeling by grouping distinct periods and magnifying important patterns (e.g., r ‘þ’ and ‘�’ segments are separated and
predicted, s segments are regrouped with the predicted values). Therefore, how to segment a time series for better LCA results
is another main question of this work.

The main contribution of this study is to propose the usage modeling technique, predictive usage mining for life cycle
assessment (PUMLCA) algorithm, which enables predictive LCA in a real time horizon. The PUMLCA algorithm can provide
a similar level of prediction accuracy to the constant rate method when data is constant, and a higher prediction accuracy
when data has complex patterns. In order to mine important usage patterns (trend, seasonality and level) effectively from a
time series, a new automatic segmentation algorithm is developed based on change point analysis. The PUMLCA algorithm
can also handle missing and abnormal values from large-scale sensor data, identify seasonality, and formulate predictive LCA
equations for current and new machines. Finally, the LCA of agricultural machinery demonstrates the proposed approach and
highlights its benefits and limitations.

The rest of the paper is organized as follows: Section ‘Description of predictive usage mining for life cycle assessment
algorithm’ describes the PUMLCA algorithm. Section ‘Design problems with PUMLCA’ provides design problems for current
and new machines. Numerical prediction tests are presented for PUMLCA and the constant rate method in Section ‘Numer
ical prediction tests for PUMLCA’ followed by a case study of agricultural machinery in Section ‘Case study: agricultural
machinery’. The benefits and limitations of the proposed methodology along with future research directions are discussed
in Section ‘Closing remarks and future work’.

Description of predictive usage mining for life cycle assessment algorithm

Fig. 4 outlines the predictive usage mining for life cycle assessment (PUMLCA) algorithm. There are five stages: data
preprocessing for handling missing and abnormal values, seasonal period analysis, segmentation analysis, time series
analysis, and predictive LCA. Details are explained in each subsection respectively. The algorithm starts from gathering
time-stamped sensor data sets with usage information of interest. The amount of fuel (or energy) consumption and
operating hours by work modes (e.g., idling and non-idling) are selected as the usage information. In this paper, the
usage information is viewed as a result of interactions among human, situational and product variables which are the
components of the usage context (Telenko and Seepersad, 2014). For example, the amount of fuel consumed by work
modes can be affected by user experience and preference (human variables), weather and soil (situational variables),
and machine deterioration and efficiency (product variables). The patterns of the usage information (usage patterns)
are defined as trend, seasonality and level in historical time series data. A trend is a long-term increase or decrease pat-
tern; a seasonality is a repeated pattern with a fixed and known period; and a level is base values after removing trend
and seasonality. Since a level can be considered as an initial value with a series of random errors, trend and seasonality
are the two main patterns that will be mined.

Data preprocessing

After collecting a time series of usage information of interest, it should be checked whether there are missing or
abnormal values. Though it is assumed that the error rate of sensor data is very low and the incompleteness of data
happens at random, it is still possible to have missing or abnormal values. In order to handle missing values (usually
indicated as not available), various imputation techniques are available: (1) removing the missing values, (2) replacing
the missing values with random values, adjacent values, mean or median, and (3) replacing the missing values based on
values of a correlated variable. Since the volume of collected data is very large, any aforementioned method can be
applied.

Unlike missing values, abnormal values (or outliers) are difficult to define. However, similar to the case of missing values,
it is assumed that the sample size of abnormal values is much smaller than the volume of the original data and abnormal
values are not generated systematically. There are two approaches: (1) three-sigma rule and (2) boxplot. The three-sigma
rule states that approximately 99.73% of values lie within three standard deviations of the mean in Gaussian distribution.
In other words, if the collected values (yt) are considered random variables following the Gaussian distribution, abnormal
values can be defined as values located outside of Eq. (1):
l� 3r 6 yt 6 lþ 3r ð1Þ
where l is the mean and r is the standard deviation.
Another method to detect abnormal values is a boxplot. Abnormal values are defined as values located outside of Eq. (2):
Q1 � 1:5IQR 6 yt 6 Q 3 þ 1:5IQR ð2Þ



Fig. 4. Overall framework of PUMLCA.
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where Q1 is the 25th percentile, Q 2 is the median or 50th percentile, Q3 is the 75th percentile, and IQR refers to the
interquartile range (Q 3 � Q 1). If data is distributed as the Gaussian distribution, Eq. (2) can be expressed as l� 2:7r.
Fig. 4 indicates that detected abnormal values are removed and handled by techniques for missing values.
Seasonal period analysis

The next step is to determine whether there are seasonal patterns, and if there is, what the length (period) of seasonality
is. It should be noted that seasonality modeling will be conducted in Section ‘Time series analysis’, but without the informa-
tion of the seasonal period, seasonality cannot be modeled. Examples of typical periods include 24 for an hourly series, 7 for a
weekly series, 12 for a monthly series, 4 for a quarterly series, etc. If a seasonal period is known, the information can be used.
If it is not known, then a dominant period should be identified with different seasonal representations of the original sensor
data.

A periodogram (Shumway and Stoffer, 2011) is suggested to identify the important seasonal period. The periodogram is a
plot with the x-axis of frequencies and the y-axis of periodogram values. The periodogram value is a sample spectral density,
which can give the relative importance of frequencies. The mathematical expression of the periodogram values are defined
as (Shumway and Stoffer, 2011):
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where yt is a time series with n discrete time points and ðj=nÞ are frequencies (j cycles in n time points) for j ¼ 1;2; . . . ;n=2.
The dominant period (i.e., reciprocal of a frequency ðj=nÞ) can be identified by arg max Pðj=nÞ.

One helpful treatment before plotting a periodogram is detrending time series usage information (i.e., remove a trend).
Two possible methods of detrending will be presented in Section ‘Time series analysis’. Also, from a practical standpoint,
users can limit a range of frequencies as a meaningful range by their definition.

Segmentation analysis

There are two types of segmentation analysis: deterministic and automatic. Deterministic segmentation analysis can be
used when some segments of given time series data show deterministic patterns, e.g., zero usages over time within specific
periods. If this prior knowledge is not available or patterns are not deterministic with variable periods, automatic segmen-
tation analysis should be applied. In this paper, a new automatic segmentation algorithm with the change point analysis is
presented.

Fig. 5 shows the schematic of the automation segmentation algorithm. A period ðn=jÞ is identified from Section ‘Seasonal
period analysis’ and the number of data points n is proportional to the period (i.e., n=j ¼ jp=j ¼ p). For each period, there are p
time indexes, m1;m2; . . . ;mp. For example, a period 12 has 12 time indexes which are January, February, . . . , December. The
goal of this algorithm is to find a shared segment (SS) over periods. spj denotes a segment, which is a set of p time indexes in
the period pj. The segment does not contain any change point.

Change point analysis is a statistical technique that can detect multiple change points within a time series (Killick et al.,
2012). When a discrete time series, y1:n ¼ fy1; . . . ; yng, is given, positions of change points, s1:m (s0 ¼ 0 and smþ1 ¼ n) can be
identified if the statistical properties of y1:s1

; ys1þ1:s2
; . . . ; ysmþ1:n are different in some sense. In this paper, changes in mean are

adopted, although changes in variance are another option. In order to identify change points, an objective function is given
by Killick et al. (2012):
FðnÞ ¼min
s

Xmþ1

i¼1

½Cðyðsi�1þ1Þ:si
Þ þ b�

( )
ð4Þ
where C is a cost function for a segment and b is a penalty. For t < n, a recursive expression can be determined as follows
(Killick et al., 2012) and solved in turn by dynamic programming:
FðnÞ ¼min
t

min
s2s1:t

Xm

i¼1

½Cðyðsi�1þ1Þ:si
þ bÞ� þ Cðyðtþ1Þ:nÞ þ b�

( )
¼min

t
fFðtÞ þ Cðyðtþ1Þ:nÞ þ bg ð5Þ
A pruned exact linear time (PELT) method (Killick et al., 2012) was proposed to solve Eq. (5) more efficiently with a prun-
ing procedure instead of searching all possible change points. During iterations for t < s < n, only a set of t satisfying Eq. (6)
will be considered:
FðtÞ þ Cðyðtþ1Þ:sÞ þ K 6 FðsÞ ð6Þ
where K is a constant.
As a cost function, the negative of maximum log-likelihood is used, which is given by Killick et al. (2012):
Fig. 5. A schematic of automatic segmentation algorithm.
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Cðyðtþ1Þ:nÞ ¼ �max
h

Xn

i¼tþ1

log f ðyijhÞ ð7Þ
where f ðyijhÞ is a density function with the parameter h for a segment.
As a penalty, there are some options such as Akaike’s Information Criterion (AIC, b ¼ 2p) and Bayesian Information

Criterion (BIC, b ¼ p logðnÞ), where p is the number of added parameters for a change point. It is also possible to specify a
type I error (e.g., 0.05 or 0.01) as a penalty value using an asymptotic distribution (Killick and Eckley, 2011). The PELT algo-
rithm is implemented in R (Killick and Eckley, 2011).

The automatic segmentation algorithm based on the change point analysis (i.e., PELT) is provided in Algorithm 1. The goal
of this algorithm is to find shared segments over seasonal periods which contain no change point. Unlike the PELT algorithm,
change points will be identified within a seasonal period. A penalty, b, should be selected by users. As the penalty value
increases, less change points will be identified and the algorithm will be less sensitive over close values. A segment is defined
as a group of members within a seasonal period. At least two members are required to be a segment (e.g., y1:3 in line 12). In
line 4, s� contains the possible positions of change points, which are p time indexes within each period (e is the indexes of
periods). In lines 5–8 (Killick et al., 2012), the PELT algorithm is implemented with the pruning procedure in line 8. Rs� is the
set of s�; s0 is the identified optimal position of change points; CPe denotes the optimal positions of change points (s�) for
each period, which is the result of the first part of the algorithm in line 10. Line 12 makes a set of segments, Se, for each period
based on the identified optimal change points (CPe). Note that s1:mp ¼ ðs1; . . . ; smp Þ. Line 13 finds shared segments (SS) over
different periods. At this point, it is possible that change points can exist among the sets, Se, in the shared segments, which
indicates that those segments are not similar patterns that repeat periodically. Line 14 makes one new time series (NS) using
shared segments of each period (e.g., SSp1

represents the shared segment of the first period). Line 15 applies the PELT method
for the new series with no period and a new change point set, CP0, is returned in line 16. The output depends on the new
change point set. If there is no change point, the shared segments and the remaining data are grouped as different time ser-
ies. If there is a change point, no segmentation will be implemented.

Algorithm 1. Automatic segmentation
1: A time series, y1:n with n number of data points
2: A seasonal period, p, where p = n/j with j cycles
3: A measure of fit C(�) and a penalty b
4: for s� ¼ 1; . . . ;mp and e ¼ p1; p2; . . . ; pj do

5: Calculate Fðs�Þ ¼ min
s2Rs�

fFðsÞ þ Cðyðsþ1Þ:s� Þ þ bg
h

6: Let s0 ¼ arg min
s2Rs�

fFðsÞ þ Cðyðsþ1Þ:s� Þ þ bg
h

7: Set CPeðs�Þ ¼ ½cpðs0Þ; s0�
8: Set Rs�þ1 ¼ fs 2 Rs� [ fs�g : FðsÞ þ Cðyðsþ1Þ:s� þ K 6 Fðs�ÞÞg
9: end for

10: return CPp1
;CPp2

; . . . ;CPpj

11: for e ¼ p1; p2; . . . ; pj do
12: Set Se ¼ fy1:s�1

; yðs�1þ1Þ:s�2
; . . . ; yðs�mp�1þ1Þ:s�mp

g
13: Find SS ¼ fSp1

\ Sp2
\ � � � \ Spj

g
14: Let NS ¼ fSSp1

; SSp2
; . . . ; SSpj

g
15: Apply line 4 � 9 to NS
16: Get CP0ðs�Þ
17: end for
18: return
19: if CP0ðs�Þ = null then
20: group SS as one time series and remaining as another time series
21: number of time series (s) = z
22: else
23: no segmentation, s ¼ 1 (i.e., original data)
24: end if
Based on the result of the automatic segmentation algorithm, time series analysis methods in the next section will be applied
to each segmented time series. Now, each time series has a new period, which is the number of seasonal time indexes.

Time series analysis

Time series analysis includes modeling time series data by extracting important patterns and forecasting future values
from the fitted model. The two most widely used time series analysis techniques (Hyndman and Athanasopoulos, 2013)
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are adopted in this paper: exponential smoothing (ETS) and autoregressive integrated moving average (ARIMA). Since ‘‘each
has its strengths and weaknesses’’ (Hyndman and Khandakar, 2008), either method can be selected by users. Observations
are denoted by yt and a forecast of h ahead time based on all the data up to time t is denoted by ŷtþhjt where h is a real time
horizon.

Exponential smoothing
The ETS models refer to an exponential smoothing family (e.g., simple exponential smoothing, Holt’s linear trend model,

Holt-Winters seasonal model, etc.) based on the innovations state space framework (Hyndman et al., 2008). The ETS model
identifies key components of a time series (trend and seasonality) and expresses their relationships (additive and multiplica-
tive) using exponential smoothing.

The simplest model of ETS is given as:
ŷtþ1 ¼ ŷt þ aðyt � ŷtÞ ð8Þ
where a is a parameter between zero and one. Eq. (8) represents that the new forecast is the combination of the old forecast
and the error from the last forecast. Similar to Eq. (8), there are 30 ETS models with a combination of trend (none, additive,
additive damped, multiplicative and multiplicative damped), seasonality (none, additive and multiplicative) and error (addi-
tive and multiplicative) (Hyndman et al., 2008).

All the 30 ETS models can be expressed as innovations state space models and the general model is given as (Hyndman
et al., 2008):
yt ¼ wðxt�1Þ þ rðxt�1Þ�t ð9Þ
xt ¼ f ðxt�1Þ þ gðxt�1Þ�t ð10Þ
where xt is the state vector which contains unobserved components such as the level, trend, and seasonality of a time series;
wð Þ and rð Þ are scalar functions; f ð Þ and gðÞ are the vector functions; and �t is the white noise process with variance r2. The
white noise process is a process that has zero mean, constant and finite variance, and uncorrelated series. Using this inno-
vations state space framework, Hyndman et al. (2008) showed that prediction interval can be obtained along with a point
forecast.

In order to get a forecast, ŷtþhjt , a recursive expression was summarized as follows (Hyndman et al., 2008):
ŷtjt�1 ¼ wðxt�1Þ ð11Þ
�t ¼ ðyt � ŷtjt�1Þ=rðxt�1Þ ð12Þ
xt ¼ f ðxt�1Þ þ gðxt�1Þ�t ð13Þ
Then, a simulation approach (Hyndman and Khandakar, 2008) can be used to simulate �t for a forecast with a prediction
interval.

The remaining part is the identification of trend and seasonality, which is called as the decomposition of a time series.

First, the trend component can be estimated (T̂t) by a moving average smoothing. The moving average smoothing of order
m is given by Hyndman and Athanasopoulos (2013):
T̂t ¼
1
m

Xk

j¼�k

ytþj ð14Þ
where m ¼ 2kþ 1. The order of the moving average smoothing is a seasonal period, and if the seasonal period is not known,
usually odd orders (e.g., 3, 5, 7, 9, etc.) can be applied (Hyndman and Athanasopoulos, 2013). A larger order gives a smoother

fit. Then, detrended time series data can be obtained as yt � T̂t for the additive model or yt=T̂ t for the multiplicative model. It
should be noted that this is one method to obtain a detrended series for the seasonal period analysis in Section ‘Seasonal
period analysis’.

Second, the seasonal component can be estimated from detrended series data. An average of each seasonal time index

over seasonal periods (e.g., all values in January for monthly data) gives the seasonal component, Ŝt .

ARIMA
While the ETS model represents a time series as exponential smoothing of trend and seasonality, the ARIMA model is

based on autocorrelations in the time series. The ARIMA model (without seasonality) is a combination of three models given
as (Hyndman and Athanasopoulos, 2013):
ð1� /1B� � � � � /pBpÞð1� BÞdyt ¼ c þ ð1þ hBþ � � � þ hqBqÞet ð15Þ
where the first parenthesis is an autoregressive (AR) model of order p, the second parenthesis is an integration (or differenc-
ing operation), and the third parenthesis on the right-hand side is a moving average (MA) model of order q. B represents a
backward shift operator, e.g., Byt ¼ yt�1.
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The AR model of order p is given by:
yt ¼ c þ /1yt�1 þ /2yt�2 þ � � � þ /pyt�p þ et ð16Þ
where c is a constant and et is white noise. This is a linear combination of past observations.
The differencing operation of order 1 and order 2 is given as:
y0t ¼ yt � yt�1 ð17Þ
y00t ¼ y0t � y0t�1 ð18Þ
The determination of differencing can be made by statistical inference called unit root tests (Hyndman and
Athanasopoulos, 2013). It should be noted that this is another method for detrending time series data for the seasonal period
analysis in Section ‘Seasonal period analysis’.

The MA model of order q is given as:
yt ¼ c þ et þ h1et�1 þ h2et�2 þ � � � þ hqet�q ð19Þ
This is a linear combination of past forecast errors.
Finally, seasonal ARIMA model can be written as (Hyndman and Athanasopoulos, 2013):
ð1� /1B� � � � � /pBpÞð1�U1Bm � � � � �UPBPmÞð1� BÞdð1� BmÞDyt

¼ c þ ð1þ h1Bþ � � � þ hqBqÞð1þH1Bm þ � � � þHQ BQmÞet ð20Þ
where lower-case letters p; d, and q are orders for non-seasonal AR, integration, and MA models; upper-case letters P, D, and
Q are orders for seasonal AR, integration, and MA models; and m is a period.

In order to forecast future values based on a fitted ARIMA model, Eq. (20) can be expanded so that only yt will be shown
on the left-hand side. By rewriting it as ŷtþhjt , a recursive expression can be solved for a forecast of h ahead time.

Close observation for both ETS and ARIMA models reveals similarities. The ETS model starts identifying trend and season-
ality and the ARIMA model uses the differencing operation to remove trend and seasonality (i.e., stationarity). The ETS then
expresses a series using past level, trend and seasonality with exponentially decreasing weights while the ARIMA expresses a
series using past observations and forecast errors.

Automatic modeling of ETS and ARIMA
As shown previously, the ETS and ARIMA require parameter estimation and model selection. Hyndman and Khandakar

(2008) provided an automatic forecasting algorithm to handle a large number of univariate time series data. The algorithm
is implemented in R package forecast. This section briefly introduces the automatic forecasting algorithm for the ETS and
ARIMA models.

The automatic forecasting algorithm for the ETS models can be summarized as follows: (1) apply all 30 models and opti-
mize parameters of each model, (2) select the best model based on a penalized likelihood such as AIC and BIC, and (3) fore-
cast future values and obtain prediction intervals based on the selected model.

The automatic forecasting algorithm for the ARIMA can be summarized as follows: (1) apply four possible models and
select the best model based on a penalized likelihood, (2) apply 13 variations on the current model and repeat the process
if a better model can be identified based on a penalized likelihood, and (3) forecast future values and obtain prediction inter-
vals based on the selected model. Details of these algorithm can be found in the work of Hyndman and Khandakar (2008).

Predictive life cycle assessment

The difference between predictive LCA and original LCA is to model the usage stage (with maintenance and end-of-life
stages) as a time series and to forecast future impact in a real time horizon. The total life cycle impact of a product can
be expressed as (Kwak and Kim, 2013):
Itotal ¼ Imfg þ Iusage þ Imaint þ Ieol ð21Þ
where Imfg ; Iusage; Imaint and Ieol represent the impact of manufacturing, usage, maintenance, and end-of-life stage. In the equa-
tion, a constant fuel (or energy) consumption rate in the usage stage and replacement cycles in the maintenance stage are
components that are dependent upon the expected lifespan. However, the time in Eq. (21) is nominal, e.g., 10 years instead of
specifying a time horizon such as from October 2014 to December 2024.

Instead, Eq. (22) gives the total environmental impact in a real time horizon:
Xl

t¼i

Itotal ¼ Imfg þ
Xl

t¼i

Iusage
i þ Imaint

i þ Ieol
h i

ð22Þ
where l is the expected life time starting from time i. The impact of manufacturing can be considered as a one-time event
while the impacts of usage, maintenance, and end-of-life are affected by time series usage information.
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The impact of manufacturing is given as (Kwak and Kim, 2013):
Imfg ¼
X

r

eraw
r Nr þ

X
p

eprocess
p Np þ

X
s

etrans
s Ns ð23Þ
where eraw
r ; eprocess

p , and etrans
s represent unit environmental impact of raw materials (r), manufacturing processes (p), and

transportation (s); Nr ;Np, and Ns denote the number of units of raw materials, manufacturing processes, and transportation.
The impacts of usage, maintenance, and end-of-life are given as:
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ð26Þ
where Ifuel and Iemission are the impacts of fuel production as in Eq. (23) and emissions while running an equipment;
efuel; eemission

q ; emaint
m ; eeol

used, and eeol
replace are the unit impacts of fuel, emissions, manufacturing of maintenance part m as in Eq.

(23), and end-of-life processing of a used product and replaced part (m); Nft is the amount of fuel consumed per liter; Nm

denotes the number of units of part m (in a product); ERq is the emission rate of emissions q in g/h; OHt is the operating time
in hours; RCm is the replacement cycle of part m in hours; d�e is the ceiling function. The value of a ceiling function will give
the number of replacements for part m. All the unit impacts can be obtained from the ecoinvent database (version 2.2),
which is available in the LCA software SimaPro. Note that this study only considers energy-related impacts (e.g., fuel and
electricity) of the usage stage, which is identified as the main contributors in literature. Other consumables are not consid-
ered, e.g., coffee and water for coffee machines, paper and ink for printers, etc. based on the scope of this study.

Section ‘Description of predictive usage mining for life cycle assessment algorithm’ described the proposed algorithm
from data preprocessing to predictive LCA formulation. Note that the algorithm starts from the available time-stamped data
sets (top of Fig. 4) and it is not discussed how many data sets should be available for the algorithm. Empirical studies show
that if the available data is not enough to identify useful patterns (e.g., only a few data points), then the result from Secti
on ‘Automatic modeling of ETS and ARIMA’ is identical with the constant rate method, which is smoothing by averaging
available data points. Actually, the constant rate method can be considered as a special case of the proposed time series anal-
ysis methods. In the next section, the proposed LCA formulation will be elaborated with design problems.
Design problems with PUMLCA

Two system design cases are considered in this study, which is shown in Fig. 6. The first case, analysis for sustainability, is
when current machines need to be analyzed for sustainability. In this case, enough usage data is available with manufactur-
ing, maintenance and end-of-life data. Life cycle information includes all the information from life cycle stages and the
expected lifespan or target time horizon.
Fig. 6. Two system design cases for predictive LCA.
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The amount of fuel consumed, Nft , and operating hour, OHt , are the time series usage information. The fitted models for Nft

and OHt from ARIMA or ETS are TS
Nf
ts and TSOH

ts with the number of segments s in Algorithm 1. For example, TS
Nf
ts can be either

Eqs. (27) and (28), or Eq. (29):
Nfts ¼ wðxt�1Þ þ rðxt�1Þ�t ð27Þ
xt ¼ f ðxt�1Þ þ gðxt�1Þ�t ð28Þ
ð1� /1B� � � � � /pBpÞð1�U1Bm � � � � �UPBPmÞð1� BÞdð1� BmÞDNfts

¼ c þ ð1þ h1Bþ � � � þ hqBqÞð1þH1Bm þ � � � þHQ BQmÞet ð29Þ
The environmental impact of current machines can be predicted as follows based on Eqs. (23)–(26):
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The second case, design for sustainability, is for the assessment of the new machines’ sustainability when the target of
environmental impact reduction should be applied to current machines due to new environmental regulations and enforce-
ment. In this case, it is assumed that the new machines are upgraded versions of current machines. For example, new machi-
nes can improve the fuel efficiency with different materials or components. While these BOM (bill of materials) changes
might increase the environmental impact of the manufacturing stage, the efficient fuel usage can reduce the environmental
impact of the usage stage. As shown in Fig. 6, the main difference between the current machines and new machines is the
availability of usage data (or usage model). The proposed method for the estimation of usage information is to use the
improvement ratio which is defined as follows:
dNf
¼ ðNf =WunitÞnew machine

ðNf =WunitÞcurrent machine
ð34Þ

dOH ¼
ðOH=WunitÞnew machine

ðOH=WunitÞcurrent machine
ð35Þ
where dNf
is the improvement ratio for the amount of fuel consumption, dOH is the improvement ratio for the operating

hours, and Wunit is a unit of work. For example, if a new nutrient applicator can apply fertilizers with high precision and
speed, these can be expressed as dNf

and dOH with the work unit of the square meter (m2) from testing data. Then, the sensor
data of current nutrient applicators can be used with the dNf

and dOH as follows for the environmental impact of the new
machine:
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The LCA result from Eqs. (36)–(39) estimates the environmental impact of the new machine. The result can also show
whether the target of environmental impact reduction is satisfied. Otherwise, new design strategy should be explored.
Note that the two design cases can be viewed as phases of a single design case, i.e., evaluation of current sustainability
and redesign.
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Numerical prediction tests for PUMLCA

In this section, a set of different data is tested to validate the prediction performance of PUMLCA. Due to the significance
of environmental impact from the usage stage in LCA, the prediction accuracy of a time series usage model will play an
important role for the estimation of environmental impact. The conventional method to model the usage stage is the con-
stant rate method, which is the average of observations. The hypotheses are (1) the PUMLCA algorithm can provide a similar
level of prediction accuracy to the constant rate method when data is constant with small random errors (i.e., steady-state
processes), hereinafter data 1, (2) the PUMLCA can predict future values more accurately than the constant rate method
when data has a trend, hereinafter data 2, (3) the automatic segmentation algorithm in PUMLCA can help to improve the
predictive modeling when data has a trend and segments, hereinafter data 3, and (4) the PUMLCA algorithm can provide
higher prediction accuracy than the constant rate method when prediction is required for specific periods within the whole
prediction horizon.

Data sets (data 1, 2, 3) with monthly seasonal patterns were generated and the procedures are described in Section ‘Data
generation’ for the hypotheses (1), (2) and (3). The three types of data sets were also used to test the hypothesis (4). In terms
of the target of prediction, this study proposes to use not only the aggregated life cycle values (accuracy) but also the
seasonal values of time series usage information (variance) because different time horizon scenarios can be tested. For exam-
ple, monthly usage data is used to predict the next two-year values and the accumulated two-year values can be used to
assess the environmental impact of life cycle as an accuracy measure. If the environmental impact of next quarter or specific
periods within two years is required to be estimated, the accuracy of the predicted seasonal values (i.e., monthly values) will
determine the quality of the analysis, which can be considered a variance measure. This is related to the fourth hypothesis.
Therefore, the best model should provide good predictions of both values: high accuracy (aggregated life cycle values) and
low variance (seasonal values).

As a prediction performance measure, mean absolute percentage error (MAPE) and mean absolute error (MAE) were used.
Eqs. (40) and (41) show MAPE and MAE with the predicted values, b1; b2; . . . ; bm and the real values, d1; d2; . . . ; dm. MAPE is
scale-independent so that results from different data sets can be compared. However, by design, if the actual values are close
to zero, MAPE cannot be defined. In this case, the scale-dependent measure, MAE, was used.
Mean Absolute Percentage Error ¼
100 b1�d1

d1

��� ���þ � � � þ bm�dm
dm

��� ���� �
m

ð40Þ

Mean Absolute Error ¼ jb1 � d1j þ � � � þ jbm � dmj
m

ð41Þ
Note that based on MAPE and MAE, lower values of test results are preferable.
Throughout the numerical tests, only positive values were accepted as valid values. Negative values were set to zero. In

order to handle non-negative data, one common method is the Box–Cox transformations (Hyndman and Athanasopoulos,
2013), which includes logarithms and power transformations. More theoretical discussions can be found in the literature
(Hyndman et al., 2008).

Data generation

To test the first hypothesis, the following data generation procedure was applied: (1) a value from 100 to 1000 was
randomly chosen using a random number generator for each month and (2) by adding a random error between �5 and 5
for each month, monthly data with seasonal patterns was generated for 16.5 years as shown in Table 8 in Appendix A.
This is data 1, which does not contain a trend and segments.

For the second hypothesis, one more procedure was added from the procedure for data 1. After applying the first and sec-
ond steps, 50 (i.e., a trend) was added for the next year values as shown in Table 9 in Appendix A (e.g., the column of January
increases by 50). This is data 2, which contains a trend.

For the third hypothesis, after applying the first and second steps from the procedure for data 1, 100 (i.e., a trend) was
added to the next year values. Then, eight consecutive monthly values starting from a random number were set to small
numbers r (i.e., segments) throughout the years as shown in Table 10 in Appendix A (r ¼ 0 in this test), which represents
periods of no activity. This is data 3, which contains a trend and segments.

For each data, a total of 20 data sets were generated and tested. The first 7 years of data were used as training data and the
remaining 9.5 years of data were used as test data as shown in Fig. 1.

Test results

The goal of this test is to construct a predictive model with the training data sets and predict future values (i.e., bm in Eqs.
(40) and (41)). The test data sets work as real values (i.e., dm in Eqs. (40) and (41)). Table 1 shows the results of the data sets
(data 1, 2, 3) in Section ‘Data generation’.

First, for data 1 (data without a trend and segments), since the data sets are designed to be constant with some mild ran-
domness, the constant rate method showed good prediction performance for the accuracy measure. The PUMLCA algorithm
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with both ETS (PUMLCA-ets) and ARIMA (PUMLCA-arima) also showed the similar level of accuracy and there is no
significant difference between the constant rate method and PUMLCA (Mann–Whitney test, a ¼ 0:05, p-value = 0.95). For
the variance measure, since the constant rate method took the average rate for each month, monthly predictions of the con-
stant rate method showed much lower accuracy than those of PUMLCA (Mann–Whitney test, a ¼ 0:05, p-value = 0). This
affects the prediction of the next quarter values (i.e., hypothesis 4) because lower monthly errors can give higher chances
to predict specific periods with accuracy. For the next quarter values, the PUMLCA showed higher prediction accuracy
(Mann–Whitney test, a ¼ 0:05, p-value = 0). Therefore, the PUMLCA algorithm can provide accurate prediction capabilities
for aggregated life cycle values (accuracy), seasonal values (variance) and values for specific periods with data 1 in compar-
ison to the constant rate method.

Second, for data 2 (data with a trend), the constant rate method showed poor prediction performance in terms of the
accuracy measure. On the other hand, the PUMLCA algorithm with both ETS and ARIMA showed good prediction accuracy.
There is no significant difference found between the real values and the results of PUMLCA-ets/arima (Mann–Whitney test,
a ¼ 0:05, p-value = 0.29/0.78). For the variance measure, monthly predictions of the constant rate method showed much
lower accuracy than those of PUMLCA (Mann–Whitney test, a ¼ 0:05, p-value = 0). This affects the prediction of the next
quarter values. For the next quarter values, the PUMLCA showed higher prediction accuracy (Mann–Whitney test,
a ¼ 0:05, p-value = 0). Therefore, the PUMLCA algorithm can provide accurate prediction capabilities for aggregated life cycle
values (accuracy), seasonal values (variance) and values for specific periods with data 2 in comparison to the constant rate
method.

Third, for data 3 (data with a trend and segments), the constant rate method and the ETS method without the automatic
segmentation algorithm (ets-no seg) showed poor prediction performance in terms of the accuracy measure. On the other
hand, the ARIMA method without the automatic segmentation algorithm (arimai-no seg) and PUMLCA-ets/arima showed
strong prediction accuracy. However, Table 2 zooms in their prediction performances using MAE, and it can be seen that
the errors from the ARIMA method without the automatic segmentation algorithm were much higher than the those from
the PUMLCA method. Due to the importance of the usage stage, the errors from the ARIMA method without the automatic
segmentation are not acceptable, and this shows that the automatic segmentation algorithm can enhance the prediction
result. Out of 20 samples, the PUMLCA-ets/arima showed the best performance. For the next quarter values, the PUMLCA
method with the automatic segmentation algorithm showed higher prediction accuracy. Therefore, the proposed segmenta-
tion algorithm can improve the predictive model of PUMLCA with data 3.

Overall, the PUMLCA method with the automatic segmentation algorithm provided better prediction performance than
the constant rate method for various data sets which are simulated from the observation of real data. This prediction
improvement of usage modeling will help to estimate the environmental impact of the product of interest more accurately.
The example of the LCA with PUMLCA will be provided in the next section. The PUMLCA method could also provide
prediction intervals while estimating a point forecast. For example, a point forecast of the next month is 1344 with the
80% prediction interval of [1330,1359]. The prediction interval can show the uncertainty of time series usage models.
Case study: agricultural machinery

Background

In this section, the proposed algorithm, predictive usage mining for life cycle assessment (PUMLCA), is demonstrated with
a case study of agricultural machines: current and new machine. The machines have more than 15,000 parts and weigh more
than 20,000 kg. The current machine was updated to have a 10% reduction of its environmental impact based on an improved
fuel efficiency. This updated machine is called the new machine. The goal is to estimate the environmental impacts of the
current and new machines in a real time horizon. Due to the data security issue, simulated data is used based on the
Table 1
Test results.

Constant rate ets-no seg arima-no seg PUMLCA-ets PUMLCA-arima

Data 1, average MAPE
Accuracy 0.75 0.08 0.14
Variance 65.58 0.76 0.79
Next quarter value 13.84 0.25 0.24

Data 2, average MAPE
Accuracy 37.05 2.80 0.91
Variance 34.92 2.80 0.98
Next quarter value 22.06 0.74 0.29

Data 3, average MAE
Accuracy 30,736 24,462 1612 166 154
Variance 636 313 225 2 2
Next quarter value 1979 1017 139 10 9



Table 2
MAEs over 20 data samples of data 3.

1 2 3 4 5 6 7 8 9 10

arima-no seg 1870 3005 855 1478 2295 2382 592 2200 965 156
PUMLCA-ets 58 1061 64 48 311 292 17 237 101 34
PUMLCA-arima 145 1044 16 24 293 224 59 173 102 66

11 12 13 14 15 16 17 18 19 20

arima-no seg 558 865 1870 1464 829 2829 1170 2826 1971 2060
PUMLCA-ets 96 70 540 9 102 122 66 3 48 48
PUMLCA-arima 57 0 322 147 119 80 35 64 47 66
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observation of real data. Tables 3 and 4 show simulated seven-year monthly data for fuel consumption and operating hours
after preprocessing the raw sensor data.

In this case study, time series usage models from the historical sensor data will be utilized to calculate the environmental
impacts for up to 10–20 years. Since the first stage (i.e., data preprocessing in Section ‘Data preprocessing’) of PUMLCA is
straightforward and simple, it was skipped in this section.
Seasonal period analysis

Instead of exploring all possible data representations (e.g., daily, weekly, quarterly, etc.), the focus was set on whether the
simulated data showed a monthly seasonality. The periodogram was plotted using Eq. (3) with the condition of frequency
greater than zero. The Periodogram shows that the maximum periodogram value can be achieved at the frequency of
0.0833 (i.e., period = 1/0.0833 = 12) for the fuel consumption data. Similarly, the operating hours data also indicate a period
of 12.
Segmentation analysis

The automatic segmentation algorithm (Algorithm 1) was applied to the two data sets in Tables 3 and 4. As a penalty, the
type I error of 0.05 was used for both data sets. First, for the fuel consumption data, a segment from February to August was
identified as a shared segment since the same change points were detected (1, 8, 9, 10, 11, and 12 as seasonal time indexes)
every year. Therefore, two segments were finally obtained, e.g., the shared segment (February–August) and the remaining
segment (January, September–December). Second, for the operating hours data, the segment from January to August was
Table 3
Monthly representation of fuel consumption (‘) data.

Year January February March April May June July August September October November December

2007 9 0 0 0 0 0 0 2 600 3400 5000 250
2008 15 0 0 0 0 0 0 0 650 3410 5500 270
2009 17 0 0 0 0 0 0 0 660 3450 5550 280
2010 16 0 0 0 0 0 0 1 665 3370 5600 270
2011 14 0 0 0 0 0 0 1.5 660 3430 5650 275
2012 16 0 0 0 0 0 0 0 680 3500 5735 280
2013 17 0 0 0 0 0 0 2 700 3570 5800 285

Table 4
Monthly representation of operating hours (h) data.

Year January February March April May June July August September October November December

2007 1 0 0 0 0 0 0 0.2 35.2 100.6 152.3 15.1
2008 1.8 0 0 0 0 0 0 0 37.1 101.6 158.1 16.3
2009 2 0 0 0 0 0 0 0 38 105.3 159.3 17.8
2010 1.9 0 0 0 0 0 0 0.1 38.3 97.6 160.1 16.5
2011 1.7 0 0 0 0 0 0 0.2 38 103.5 162.2 17
2012 1.9 0 0 0 0 0 0 0 39 110.3 164.3 17.9
2013 2 0 0 0 0 0 0 0.22 41 115.2 165.2 18.2
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identified as a shared segment. The same change points were detected (8, 9, 10, 11, and 12 as seasonal time indexes) every
year. Therefore, two segments were finally obtained.

Time series analysis

The automatic forecasting algorithm in Section ‘Automatic modeling of ETS and ARIMA’ was applied to the original data
sets (i.e., without segmentation) and the results of the automatic segmentation in Section ‘Segmentation analysis’. Table 5
shows the results. For example, the original fuel consumption data is fitted as a seasonal AR model with a seasonal differ-
encing and a drift using ARIMA. The first segment data (segment 1) shows a combination of seasonal AR and MA models
without a drift. The second segment data (segment 2) shows only a seasonal differencing operation with a drift. The original
fuel consumption data is also fitted as an additive error and seasonal component model using ETS. The first segment data
shows an additive error and seasonal component model again. The second segment data shows an additive trend, multiplica-
tive error and seasonal component model.

Predictive LCA

LCA for current machine
The PUMLCA-ets models (with two segments) of fuel consumption, Nft , and operating hours, OHt , in Table 5 were used as

usage models of the agricultural machine. For predictive LCA, starting from January 2014, forecasts were built up to
December 2024 (i.e., 10 years) and up to December 2034 (i.e., 20 years). For environmental impact calculation,
Eco-Indicator 99 method (EI-99) (Goedkoop and Spriensma, 2001) was used, which is one of widely used methods in LCA
and provides a single score (Point) from pre-defined damage categories such as human health, ecosystem quality, and
resource.

In the manufacturing stage, the environmental impact was assumed as 12,000 Pt. In the usage stage, the density of diesel
fuel was assumed as 0.85 kg/l and emission rates was given in Table 6. The idling and nonidling ratio (20%/80%) was calcu-
lated using averages of seven-year operating hours by work modes. In the maintenance stage, the assumptions on the
replacement cycle of major parts and minor parts are as follows (Kwak and Kim, 2013): tires (3000 h), transmission
(3000 h), hydraulic components (3000 h), engine (5000 h), axles (5000 h), and minor parts such as oils, greases, and filters
(specified cycle). In the end-of-life stage, the following assumptions were made: steel (90% recycle and 10% landfill), iron
(90% recycle and 10% landfill), and others (80% landfill and 20% incineration).

Based on Eqs. (30)–(33), a predictive LCA result of the current machine in the real time horizon (January 2014–
December 2034) was estimated as shown in Fig. 7. The impact of the manufacturing stage was the same regardless
of time horizons since it is a one-time event. On the other hand, the impacts of the usage, maintenance, and
end-of-life stage were varied by time. Similar to previous LCA studies, the impact of the usage stage accounted for
Table 5
Results of time series analysis.

ARIMA ETS

Fuel consumption data
Original ð1� 0:41B12Þð1� B12Þyt ¼ 1:53þ et yt ¼ lt�1 þ st�12

lt ¼ lt�1 þ 0:06�t

st ¼ st�12 þ 10�4�t

Segment 1 (February–August) ð1þ 0:28B7Þð1� B7Þyt ¼ ð1� 0:28B4Þet yt ¼ lt�1 þ st�7

lt ¼ lt�1 þ 0:001�t

st ¼ st�7 þ 2 � 10�4�t

Segment 2 (January, September–December) ð1� B5Þyt ¼ 7:42þ et yt ¼ ðlt�1 þ bt�1Þst�5

lt ¼ ðlt�1 þ bt�1Þð1þ 0:395�tÞ
bt ¼ bt�1 þ 0:098ðlt�1 þ bt�1Þ�t

st ¼ st�5ð1þ 10�4�tÞ

Operating hours data
Original ð1� B12Þyt ¼ ð1þ 0:21BÞet yt ¼ lt�1 þ st�12

lt ¼ lt�1 þ 0:29�t

st ¼ st�12 þ 3 � 10�4�t

Segment 1 (January–August) ð1� B8Þyt ¼ ð1� 0:67BÞð1� 0:64B8Þet yt ¼ lt�1 þ st�8

lt ¼ lt�1 þ 10�4�t

st ¼ st�8 þ 0:03�t

Segment 2 (September–December) ð1� B4Þyt ¼ 0:38þ et yt ¼ lt�1 þ st�4

lt ¼ lt�1 þ 0:12ðlt�1 þ st�4Þ�t

st ¼ st�4 þ 0:88ðlt�1 þ st�4Þ�t



Table 6
Assumptions on emission rates (g/h) (Kwak and Kim, 2013).

Type Nonidling (80%) Idling (20%) Average

Nitrogen oxides (NOx) 372.73 143.16 326.82
Particulate matter (PM) 1.76 0.67 1.54
Carbon monoxide (CO) 23.84 9.16 20.9
Hydrocarbons (HC) 5.42 2.08 4.75
Sulfur dioxide (SO2) 0.99 0.43 0.89
Carbon dioxide (CO2) 150829.6 065427.83 133749.3
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the majority of the environmental impact. The impact of the maintenance stage showed a big increase since major parts
(engine and axles) were replaced after 10 years. It should be noted that the two usage models (PUMLCA and constant
rate method) were used for the usage stage in order to show the impact of prediction accuracy in Section ‘Numerical
prediction tests for PUMLCA’ (PUMLCA was also used for the maintenance and end-of-life stages). The data in this case
study was similar to the third hypothesis in Section ‘Numerical prediction tests for PUMLCA’ (i.e., data with increasing
trend and segments) so that it can be expected that the constant rate method would underestimate the impact (about
17,000 Pt over 20 years), which is greater than the impact of the manufacturing stage. If the data is quite constant, a
similar result between PUMLCA and the constant rate method would be produced as seen in Section ‘Numerical predic-
tion tests for PUMLCA’ (i.e., data without trend and segments). Furthermore, the top of Fig. 7 shows the 80% prediction
intervals of the usage impact by PUMLCA. Unlike the constant rate method, PUMLCA can provide the uncertainty of its
predictive model.

LCA for new machine
New machines were assumed to be designed based on the current machines with the target of 10% reduction of environ-

mental impact over 20 years. It needs to utilize the usage data of the current machines with the improvement ratio, dNf
and

dOH as shown in Fig. 6. Similar to the current machine, predictive LCA was conducted starting from January 2014 up to
December 2024 (i.e., 10 years) and up to December 2034 (i.e., 20 years) with the EI-99 method.

In the manufacturing stage, the environmental impact was assumed to be increased to 14,500 Pt (20.8%) due to the addi-
tional power sources. The other assumptions of the usage, maintenance and end-of-life stage were similar to the current
machine. The unit of work was the square meter (m2) and the performance test was conducted to compare the new machine
and the current machine. The improvement ratio for fuel consumption dNf

was 0.8 and the improvement ratio for operating
hours dOH was 0.85.

Based on Eqs. (36)–(39), the predictive LCA result of the new machine in the real time horizon (January 2014–December
2034) was estimated as shown in Fig. 8.

Table 7 shows the comparison of the two LCA results of the current and new machine. Although the impact from the man-
ufacturing stage was increased (20.8%) for the new machine, the total impact was reduced mainly from the usage stage. It
should be noted that the result depends on the lifespan of machines. 8.4% of environmental impact reduction was expected
Fig. 7. Predictive LCA results for current machine.



Fig. 8. Predictive LCA results for new machine.

Table 7
Comparison of current and new machines (EI-99, Pt).

Manufacturing Usage Maintenance End-of-life Total

10 year 20 year 10 year 20 year 10 year 20 year 10 year 20 year 10 year 20 year

Current machine 12,000 12,000 41,706 84,002 9295 22,890 476 805 63,477 119,697
New machine 14,500 14,500 33,763 67,961 9400 22,900 480 820 58,143 106,181
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for 10 years and 11.3% for 20 years, which satisfies the target of 10% reduction of environmental impact over 20 years.
Sensitivity analysis can be applied to find the minimum values of the improvement ratio, dNf

and dOH to satisfy the target.
In conclusion, the proposed algorithm, PUMLCA, captured usage patterns from large-scale sensor data with the automatic
segmentation algorithm and time series analysis, and could assess environmental impact of a complex system in a real time
horizon.
Closing remarks and future work

In this paper, the predictive usage mining for life cycle assessment (PUMLCA) algorithm is proposed to model the usage
stage for the LCA of products. By defining usage patterns as trend, seasonality, and level from a time series of usage infor-
mation, predictive LCA can be conducted in a real time horizon, which can provide more accurate results of LCA.
Large-scale sensor data of product operation was analyzed to mine usage patterns and build a usage model for LCA. The
PUMLCA algorithm includes handling missing and abnormal values, seasonal period analysis, segmentation analysis, time
series analysis, and predictive LCA. In order to mine important usage patterns more effectively from a time series, the auto-
matic segmentation algorithm is developed based on change point analysis.

The prediction performance test results with various data sets showed that the predictive model from the PUMLCA
method can provide better prediction accuracy than the constant rate method. The automatic segmentation algorithm mag-
nified important patterns and helped to predict future values more accurately.

Two different design problems were formulated to incorporate the usage model from the PUMLCA method in predic-
tive LCA. The case study of agricultural machinery showed how to apply the PUMLCA method for the predictive LCA of
complex systems. The environment impacts of both current machines and new machines could be estimated and
compared.

In the future, various data sets from different products can be tested with the PUMLCA algorithm. The current model,
which considers only a single type of machinery, can be extended to multiple types of machinery. In order to perform
LCA with multiple types of machinery, hierarchical time series modeling and forecasting may be helpful (Hyndman et al.,
2011).
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Appendix A. Sample data sets in Section ‘Numerical prediction tests for PUMLCA’

Tables 8–10 show the sample of data 1, data 2, and data 3.
Table 8
Sample of data 1 for hypotheses 1 and 4.

Year January February March April May June July August September October November December

1 470 538 544 669 232 911 747 353 909 980 133 213
2 475 540 545 672 231 913 742 354 909 982 130 218
3 475 542 544 670 234 908 747 354 914 985 129 215
4 466 539 547 671 229 919 745 350 906 975 135 216
5 473 534 548 674 232 913 748 358 913 984 135 214
6 474 539 539 668 232 911 747 349 908 983 132 208
7 471 541 548 667 232 913 748 353 912 982 137 214
8 473 543 545 666 229 907 748 354 911 980 136 217
9 467 536 542 670 229 911 745 355 907 975 138 211

10 466 537 544 674 235 914 743 355 910 979 136 217
11 468 536 543 673 230 909 749 349 909 982 129 215
12 472 542 542 665 222 908 750 351 908 976 132 208
13 466 541 545 664 229 916 746 351 905 977 132 218
14 473 542 539 667 229 912 742 354 908 977 133 217
15 474 538 541 664 228 914 748 349 905 984 133 209
16 473 533 549 674 232 911 751 356 909 979 135 212
17 467 534 539 672 234 915

Table 9
Sample of data 2 for hypotheses 2 and 4.

Year January February March April May June July August September October November December

1 975 872 965 976 799 449 681 169 399 728 614 725
2 1024 921 1010 1029 845 500 733 219 455 779 669 772
3 1077 973 1061 1070 893 549 786 271 502 828 713 823
4 1123 1022 1119 1129 940 605 832 312 549 872 765 871
5 1174 1077 1160 1179 991 659 885 365 600 928 813 923
6 1224 1117 1210 1224 1040 701 930 421 658 974 870 975
7 1273 1176 1268 1275 1095 751 978 462 698 1030 913 1025
8 1326 1220 1309 1325 1139 808 1029 522 751 1073 963 1079
9 1381 1271 1359 1379 1197 854 1078 567 805 1130 1011 1131

10 1427 1321 1419 1421 1248 899 1128 616 857 1179 1063 1181
11 1481 1367 1468 1472 1299 950 1180 671 900 1230 1117 1225
12 1526 1419 1515 1526 1340 1006 1229 712 953 1278 1162 1278
13 1575 1469 1561 1569 1393 1058 1278 769 1005 1328 1215 1328
14 1629 1527 1618 1625 1447 1099 1337 821 1056 1371 1268 1380
15 1677 1575 1667 1670 1495 1155 1378 872 1102 1420 1320 1423
16 1723 1623 1714 1722 1540 1209 1429 933 1153 1469 1372 1471
17 1770 1671 1760 1776 1592 1258

Table 10
Sample of data 3 for hypotheses 3 and 4.

Year January February March April May June July August September October November December

1 r r r r r r 155 129 643 313 r r
2 r r r r r r 257 233 746 409 r r
3 r r r r r r 355 333 848 518 r r
4 r r r r r r 452 429 944 610 r r
5 r r r r r r 558 525 1038 710 r r
6 r r r r r r 654 632 1141 813 r r
7 r r r r r r 752 734 1242 909 r r
8 r r r r r r 855 827 1344 1012 r r
9 r r r r r r 958 928 1445 1117 r r

10 r r r r r r 1053 1025 1542 1214 r r
11 r r r r r r 1160 1124 1643 1317 r r
12 r r r r r r 1253 1231 1743 1410 r r
13 r r r r r r 1354 1328 1839 1510 r r
14 r r r r r r 1450 1425 1943 1616 r r
15 r r r r r r 1553 1534 2044 1711 r r
16 r r r r r r 1656 1629 2143 1808 r r
17 r r r r r r
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