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This article presents a multi-scenario decomposition with complementarity constraints approach to wind
farm layout design to maximize wind energy production under region boundary and inter-turbine distance
constraints. A complementarity formulation technique is introduced such that the wind farm layout design
can be described with a continuously differentiable optimization model, and a multi-scenario decomposition
approach is proposed to ensure efficient solution with local optimality. To combine global exploration and
local optimization, a hybrid solution algorithm is presented, which combines the multi-scenario approach
with a bi-objective genetic algorithm that maximizes energy production and minimizes constraint violations
simultaneously. A numerical case study demonstrates the effectiveness of the proposed approach.

Keywords: wind farm; layout optimization; multi-scenario decomposition; complementarity constraints

1. Introduction

Wind power is currently among the fastest growing renewable energy sources worldwide. Moti-
vated by a series of economic, social and political concerns, wind power has received tremendous
attention over the past decades and is now considered one of the most promising alternatives
to increasingly expensive, rapidly depleting and environmentally controversial fossil energies.
Statistics show that the total capacity of wind power installed worldwide increased from 24.3 GW
in 2001 to 196.6 GW in 2010 (WWEA Staff 2010), an average growth rate of 25% annually. Such
development far exceeds official expectation made at the turn of the century. For example, the
wind power capacity installed in Europe was over 86 GW in 2010, more than double the 40 GW
originally planned for the year in the European Union’s White Book on Energy. Assisted by the
various institutional supports such as feed-in tariffs (Couture and Gagnon 2010), Kyoto protocol
(United Nations 1998), and the White Book (European Commission 1997), wind energy genera-
tion has developed to a point where it is not only competitive for meeting small loads at remote
locations but also viable for meeting relatively large load demand connected to the grid.

At present time, the rated capacities of wind turbines are still relatively low compared to
conventional power generation units. Therefore, to provide more energy, multiple turbines need
to be located at a single site, leading to a wind farm. While the integrated deployment of turbines
does bring some economic advantage, it also introduces an additional dimension of complexity
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2 S. Lu and H. M. Kim

due to the wake effect: when turbines are placed too close to one another along the prevailing wind
direction, the power production of the turbines downstream will be reduced due to the existence
of upstream turbines. As a consequence, the layout (i.e. the position of the individual turbines)
decision of a wind farm has a significant impact on its performance.

The global expansion of wind power generation has been accompanied by rapid development
of wind farm layout design methodologies. Mosetti, Poloni, and Diviacco (1994) proposed one
of the first optimization approaches for wind turbine placement in a farm setting using a genetic
algorithm (GA). A decade later, Grady, Hussaini, and Abdullah (2005) replicated the experiments
of Mosetti, Poloni, and Diviacco (1994) by modifying the settings of the GA. Since then, a great
number of optimization methods have been presented for wind farm layout design: Huang (2007,
2009) presented improved results on the same case study using a distributed GA that features
migration of the fittest individuals among subpopulations; Wan et al. (2009) proposed a real-
coded GA that allows turbine positions to be adjusted within a computational grid. In addition to
GA, Marmidis, Lazarou, and Pyrgioti (2008) introduced a Monte Carlo simulation approach for
maximum energy production and minimum installation cost; Rivas (2008) presented a simulated
annealing algorithm that involves three turbine placement operations—add, remove and move;
Wan et al. (2010) proposed a particle swarm algorithm for wind farm layout design optimization
with spacing constraints.

In addition to algorithmic developments, a substantial contribution has been made to the wind
farm layout design literature from the modelling perspective. In general, the majority of model
extensions in wind farm layout design focus on the following aspects: (1) the economic perfor-
mance of the wind farm; (2) the incorporation of turbine design/selection; (3) the representation
of turbine wake; (4) the characterization of wind resource uncertainty; and (5) the consideration of
special constraints. For example, González et al. (2010) proposed an optimization approach that
maximizes the net present value of a wind farm project; Larsen et al. (2011) presented a generic
economic framework to consider design trade-off in wind farm layout; Mustakerov and Borissova
(2010) presented a mixed-integer nonlinear optimization model for wind turbine type and number
choice and placement; Chowdhury et al. (2012b) considered simultaneous turbine selection and
placement using a particle swarm optimization approach; Lackner and Elkinton (2007) devel-
oped an analytical framework that integrates wake loss and Weibull wind speed distribution along
each direction sector; Chen and MacDonald (2011) proposed a wind farm layout optimization
method with consideration of land availability due to the landowner’s decision on whether or not
to participate in the project; Cassola et al. (2008) presented a procedure to calculate the optimal
allocation of wind power plants over an extended territory to address the trade-off between wind
energy input into the power system and its temporal variability.

This article addresses wind farm layout design optimization with a relatively tight layout and
under a limited region size. Limited literature has reported the analysis of the effect of land area
(or land use following Denholm et al. 2009). Christie and Bradley (2012) examined the optimal
scale of wind turbine arrays that maximizes the power output per unit of land occupied and
found that a wind farm designed with this objective could be very different from one designed
to maximize economic gain. Chowdhury et al. (2012a) presented a response surface model that
describes a wind farm’s energy production as a function of the land area per megawatt installed
(LAMI) and the nameplate capacity of the farm, by sampling the optimal energy production over
the LAMI–capacity space. Denholm et al. (2009) investigated the land use of 172 US wind farm
projects constructed or proposed in the 2000s; their analysis indicates an average land use of
34.5 ± 22.4 hectare/MW from a sample range of 9 to 100 hectare/MW. In this article, a target
land-use level that lies at the lower end of this range, e.g. around 5 hectare/MW, is considered.
For turbine placement in such a setting, inter-turbine spacing is generally more difficult to satisfy.
Thus, the computational grid configuration (Mosetti, Poloni, and Diviacco 1994; Grady, Hussaini,
and Abdullah 2005; Marmidis, Lazarou, and Pyrgioti 2008; Huang 2009) commonly employed in

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
Il

lin
oi

s 
at

 U
rb

an
a-

C
ha

m
pa

ig
n]

 a
t 1

2:
57

 0
5 

M
ar

ch
 2

01
4 



Engineering Optimization 3

wind farm layout design optimization literature may not be used to ensure inter-turbine spacing.
Several grid-free wind farm layout design optimization approaches have been proposed. For
example: Kusiak and Zheng (2010) presented a real-coded evolutionary strategy for maximum
energy production and minimum constraint violation; Chowdhury et al. (2012b) proposed an
approach for simultaneous turbine selection and placement, where the latter is handled by a
particle swam algorithm using continuous turbine positions; Kwong et al. (2012) introduced a
continuous-location model for layout optimization that considers noise propagation as an objective
function in addition to energy generation; Du Pont and Cagan (2012) presented an extended pattern
search approach which operates with a continuous solution space and employs a random turbine
selection mechanism to avoid convergence to local optima.

As of today, almost all the existing approaches for wind farm layout design optimization are
based on metaheuristic algorithms. This is partly due to the complexity of the problem: it exhibits a
considerable amount of non-smoothness and discreteness, which cannot be easily captured by tra-
ditional optimization models based on nonlinear programs. In general, metaheuristic approaches
are robust in that they have little requirement on the optimization model’s continuous differen-
tiability. In addition, most of them are inherently stochastic and are thus known to possess the
capability of global exploration, which may lead to layout designs with better overall performance.
However, most of such approaches are also known to lack a guarantee of optimality (Haupt and
Haupt 2004), i.e. being able to find the exact optimal solution, locally or globally. In addition,
some of the metaheuristic approaches may require problem-specific constraint handling strategies
to ensure effectiveness of constraint satisfaction (Coello Coello 2002).

This article pursues a different track to address wind farm layout design optimization with the
aid of complementarity constraints (CCs). Complementarity is a relationship between functions
(variables) where either one (or both) must be at its boundary. An example of a CC is given as
follows:

0 ≤ H(x) ⊥ G(x) ≥ 0, (1)

where x represents the variables and H and G are multifunctions in Rp. In particular, the symbol
⊥ indicates that H and G are non-negative and that either [H]j or [G]j or both are zero for
j = 1, . . . , p. The CC in Equation (1) can be equivalently converted into the following set of
inequality constraints:

F ≥ 0, G ≥ 0, G(x) ◦ F(x) ≤ 0, (2)

where the symbol ◦ represents the Hadamard product, i.e. the term-by-term product operation
between two vectors: a ◦ b = [a1, . . . , an]T ◦ [b1, . . . , bn]T = [a1b1, . . . , anbn]T.

CCs are particularly useful in wind farm layout design optimization since they can be used to
capture certain non-smooth wake effect analysis so that the problem is described as a continuously
differentiable model. As a result, region boundary and inter-turbine distance constraints can be
explicitly handled in the optimization model; and the wind farm layout design optimization prob-
lem can be solved through adapting standard gradient-based nonlinear program (NLP) solvers.
Importantly, a certain level of local optimality can be ensured from this approach, supported by
established theories in mathematical programs with complementarity constraints (MPCCs) (Luo,
Pang, and Ralph 1996).

As wind farm layout design optimization usually requires consideration of the farm’s perfor-
mance over a portfolio of wind scenarios (i.e. direction and speed) which increases the complexity
of the problem, this article also presents a multi-scenario decomposition-based approach to
reduce the associated computation. Although most existing approaches in the research area of
decomposition-based design optimization are presented for NLP models, the area has recently
been linked to MPCCs under the notion of multidisciplinary design optimization with CCs
(MDO-CCs) (Lu, Shanbhag, and Kim 2008; Lu and Kim 2010; Lu et al. 2010). The presented
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4 S. Lu and H. M. Kim

decomposition-based approach falls into the context of MDO-CC, and thus can be shown to
generate solutions that satisfy certain stationarity conditions.

The complementary properties of the metaheuristic approach and the decomposition-based
MDO-CC approach suggest that the two can be combined to achieve better performance. This
article proposes to solve the wind farm layout design optimization problem with an approach that
hybridizes a GA and a local refinement algorithm based on the presented MDO-CC formulation.
The proposed approach combines the global exploration capability of the GA with the local opti-
mization capacity of the MDO-CC approach; it also enables explicit consideration of inter-turbine
spacing and regional constraints, as well as the associated sensitivity analysis. The effectiveness
of the presented algorithm is demonstrated with a numerical case study.

The article is organized as follows: Section 2 describes a wind farm analysis model, with the
calculation of the wake effect and energy production explained. Section 3 presents an optimization
model for wind farm layout design, followed by a complementarity reformulation as well as
its multi-scenario decomposition formulation. The presented hybrid GA-MDO-CC approach is
described in Section 4 and demonstrated with numerical results in Section 5. Conclusions are
drawn in Section 6.

2. Performance analysis for wind farm layout design

In this section, the performance analysis of a wind farm is elaborated. Specifically, a wind (direc-
tion and speed) distribution model is introduced, followed by the wake effect of wind turbines;
after that, the wind distribution and the wake effect are combined to develop a performance
assessment model for the wind farm.

2.1. Wind distribution model

The quantity of kinetic energy that a turbine can capture from the wind depends mainly on the
wind speed distribution at the turbine site and the power versus wind speed characteristic (also
known as the power curve) of the turbine. In this article, it is assumed that the wind speed v at a
turbine location is a random variable following a continuous distribution with a probability density
function fv(v) that can be estimated from meteorological data with a distribution identification
analysis tool. Many probabilistic models have been proposed to describe wind speed, such as
the two-parameter Weibull distribution (Takel and Brown 1978; Skidmore and Tatarko 1990),
the two-parameter gamma distribution (Nicks and Lane 1989), and the two-parameter lognormal
distribution (Burlaga 2000). Among these models, the two-parameter Weibull distribution is most
widely used in wind energy engineering, because it conforms well to the observed long-term
distribution of mean wind speeds for a range of sites. On some occasions, the one-parameter
Rayleigh distribution, a special case of the Weibull distribution with its shape parameter equal to
two, is used to model the wind speed (Corotis, Sigl, and Klein 1978). In this article, it is assumed
that the wind speed at a given location follows a two-parameter Weibull distribution, with a scale
parameter c and a shape parameter k:

fv(v) = k

c

(v

c

)k−1
e−(v/c)k

. (3)

Moreover, it is assumed that all locations within the terrain under consideration share the same
wind direction θ , and that, under each θ , the free-stream wind speed at these locations follows
the same Weibull distribution with parameters c(θ) and k(θ), where c(θ) and k(θ) are functions
of θ . This assumption is generally reasonable for a wind farm with relatively flat terrain (Kusiak
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Engineering Optimization 5

Figure 1. Wake effect of a single turbine.

and Zheng 2010). For regions where this assumption is not satisfied, more complicated wind
distribution models need to be applied. For example, Zhang et al. (2013) presented a multivariate
and multimodal wind distribution that captures the coupled variation of wind speed, wind direction
and air density, and showed that such a model provides better estimates than the traditional
univariate models such asWeibull, Rayleigh and Gamma distributions. Future work could consider
wind farm layout design optimization with more realistic wind distribution models.

2.2. Wake model

As the wind stream flows through the turbine rotor, part of its kinetic energy is captured by the
turbine and thus there is a speed loss after the rotor plane. Assuming the flow to be incompressible,
the flow stream must be expanded and deflected to keep continuity in the mass flow. This is known
as the wake effect of the turbine. As the wind moves downstream, the wake gradually expands and
mixes with the surrounding flow, and the wake effect diminishes gradually until the flow speed
has fully recovered far downstream (Frandsen et al. 2006). The wake effect of a single turbine is
illustrated in Figure 1.

Single wake

A wake model is a simplified quantitative means of representing the speed loss and wake expansion.
The loss of wind speed due to a turbine wake is usually accounted for by the wind speed deficit,
which is defined as the fraction of speed reduction in the wake from the free-stream speed. The
speed deficit dv(d) at a distance d downstream from the turbine can be approximated as follows
(Lackner and Elkinton 2007):

dv(d) = 1 − v(d)

v0
=

⎧⎨⎩
1 − √

1 − CT

(D0/D(d))2 d > 0

0 else.
(4)

where v0 is the free-stream wind speed; v(d) is the wind speed at distance d in the wake; CT is the
thrust coefficient of the turbine; D0 is the rotor diameter; and D(d) is the wake diameter at distance
d downstream. For simplicity of notation, the wind direction θ is dropped from the expressions in
the remainder of this subsection unless noted otherwise. Following Katic, Hojstrup, and Jensen
(1986), the expansion of the wake can be approximated by a linear model:

D(d) = D0 + 2κd, (5)

where κ is the wake decay constant.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
Il

lin
oi

s 
at

 U
rb

an
a-

C
ha

m
pa

ig
n]

 a
t 1

2:
57

 0
5 

M
ar

ch
 2

01
4 



6 S. Lu and H. M. Kim

Figure 2. Decomposition of the distance between turbines Ti and Tj .

Figure 3. Effect of a partial wake.

Partial wake

The location of a wind turbine Ti is represented by its coordinates (xi, yi) in a two-dimensional
Cartesian coordinates system. Following this representation, for a given wind direction θ , the
distance between the respective rotor planes of two turbines Ti and Tj along θ can be calculated as

di,j = (xj − xi) cos θ + (yj − yi) sin θ (6)

and the distance Xi,j between the two rotor centres along the direction orthogonal to θ can be
calculated as

Xi,j = −(xj − xi) sin θ + (yj − yi) cos θ . (7)

The two distances are illustrated in Figure 2.
Assuming no other turbines are present, when Tj is fully immersed in the wake of the upstream

Ti, the wind speed that reaches Tj’s rotor, vj0, equals the wind speed at di,j in Ti’s wake, vi(di,j),
which is implied from Equation (4). For the scenarios where Tj is partially immersed in the wake
of Ti (as shown in Figure 3), an equivalent wind speed vj0 at the rotor plane downstream can be
calculated following González et al. (2010):

(v0 − vj0)
2 = Aj,i

A0
(v0 − vi(di,j))

2, (8)
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Engineering Optimization 7

where A0 = πD2
0/4 is the area of Tj’s rotor, and Aij is the overlapping area between Ti’s wake (at

distance di,j) and Tj’s rotor:

Aj,i(R, |Xi,j|, r) =

⎧⎪⎪⎨⎪⎪⎩
πr2 |Xi,j| ≤ R − r,

R2

(
γR − sin(2γR)

2

)
+ r2

(
γr − sin(2γr)

2

)
|Xi,j| ∈ [R − r, R + r],

0 |Xi,j| ≥ R + r,

(9)

where R is the radius of the bigger circumference (usually the wake) and r is the radius of the
smaller circumference (usually the rotor); γR and γr are the central angle corresponding to the
overlap at the bigger and smaller circumferences, respectively:

γR = cos−1

(
R2 + X2

i,j − r2

2|Xi,j|R

)
|Xi,j| ∈ [R − r, R + r], (10)

γr = cos−1

(
R2 − X2

i,j − r2

2|Xi,j|r

)
|Xi,j| ∈ [R − r, R + r]. (11)

Note that Equation (8) can be reformulated as

dv2
ji = Aj,i

A0
dv2

i (di,j), (12)

where dv2
ji denotes the equivalent wind speed deficit at turbine Tj due to turbine Ti, and dvi(di,j)

denotes the wind speed deficit in the wake of Ti at location di,j.

Multiple wakes

In the wind farm setting, a turbine downstream could be affected by the wakes of multiple turbines
upstream. Therefore, the total effect of the wakes needs to be calculated. The reader is referred
to Crespo, Hernandez, and Frandsen (1999) for a review of methods that estimate the composite
wake effect. In this article, the method by Katic, Hojstrup, and Jensen (1986) is employed. This
model indicates that the square of the equivalent wind velocity deficit at a given location can be
calculated by superposing the square of the wind velocity deficits induced by all the upstream
turbines at this location. Following the model, the expression for the composite wake effect based
on the partial wake model in Equation (12) is given by

dv2
j =

N∑
i

Aj,i

A0
dv2

i (di,j), (13)

where dvj represents the composite wind speed deficit at turbine Tj’s rotor plane, and N is the
total number of turbines.

Once the composite wind speed deficit for a given turbine layout is calculated for a wind
direction θ , it can be used to estimate the farm’s energy production along θ . This is discussed in
Section 2.3.

2.3. Energy production

The power output of a wind turbine can be determined through its power curve pw(v) and the
(equivalent) wind speed that reaches its rotor. As different wind generators have different power
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8 S. Lu and H. M. Kim

curves, the model used to describe them is also different. Generally speaking, the power output
characteristic of a typical wind turbine can be assumed to be such that it starts generating at the
cut-in wind speed Vi; the power output increases as the wind speed increases from Vi to the rated
wind speed Vr ; and the rated power pwn is produced when the wind speed varies from Vr to the
cut-out wind speed Vo, at which the turbine will be shut down for safety.

This article considers an approximated power curve that describe the turbine’s power output in
a piecewise linear manner:

pw =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
v − Vi

Vr − Vi
pwn, Vi ≤ v < Vr

pwn, Vr ≤ v ≤ Vo

0, else,

(14)

where Vi, Vo and Vr represent the cut-in, the cut-out, and the rated wind speed of the turbine,
respectively. Additionally, pwn denotes the rated power of the turbine. Note that although the linear
power curve in Equation (14) is just a simplification, the presented approach would also work
with any polynomial power curve model.

Following the power curve, the expected total power generated by the wind turbine under a
given wind direction can be calculated as∫ Vo

Vi

pw(v)
k(θ)

c(θ)

(
v

c(θ)

)k(θ)−1

e−(v/c(θ))k(θ)

dv. (15)

The wake effect affects the energy production of a wind turbine through the reduced wind
speed at its rotor plane. Lackner and Elkinton (2007) showed that this effect can be accounted
for through an equivalent Weibull distribution at the turbine’s location. It is also shown that the
composite wind speed deficit dvi at a given turbine Ti only affects the scaling parameter c of the
Weibull distribution:

cj(θ) = (1 − dvj)c(θ). (16)

Following Equations (15) and (16), the expected total power generated by a wind farm consisting
of N identical turbines under wind direction θ can be calculated as

E(P(θ)) =
N∑

j=1

∫ Vo,j

Vi,j

pw,j(v)
k(θ)

cj(θ)

(
v

cj(θ)

)k(θ)−1

e−(v/cj(θ))k(θ)

dv, (17)

where Vi,j and Vo,j represent the respective cut-in and cut-out wind speeds of turbine Tj, and pw,j(v)
is the power curve of Tj.

3. MDO-CC approach for wind farm layout design

In this section, an optimization model for wind farm layout design is presented based on the
analysis model summarized in Section 2. To solve the optimization problem, the section first
introduces a complementarity reformulation technique which converts the non-smooth wake effect
analysis into a set of CCs with continuously differentiable component functions, then presents a
multi-scenario decomposition approach that solves the derived optimization model with CCs in
a decomposed manner.
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Engineering Optimization 9

3.1. System optimization model

This subsection presents a wind farm layout design optimization model that determines the loca-
tion of the farm’s turbines. Specifically, a wind resource distribution characterized by n scenarios,
ω(1), . . . , ω(n), is considered, with each scenario ω(m) defined a{

ω(m)| θ(m), Pr(m)
}

, (18)

where θ(m) denotes the wind direction under scenario ω(m) and Pr(m) denotes ω(m)’s frequency
of appearance. The problem is set up such that it locates N homogenous turbines to maximize
the energy production of the farm. The formulation of the wind farm layout design optimization
(WFLDO) problem is given as

WFLDO : max
x1,...,xN , y1,...,yN

(
n∑

m=1

Pr(m) · E(P(θ(m)))

)
· TY (19a)

s.t. x2
i + y2

i ≤ R2
c , ∀i = 1, . . . , N , (19b)

(xi − xj)
2 + (yi − yj)

2 ≥ (α · D0)
2, ∀i, j = 1, . . . , N , i 
= j, (19c)

where xi and yi denote the two-dimensional coordinates of turbine Ti, Rc denotes the radius of the
terrain in consideration, D0 is the rotor radius of the turbines, α is a spacing factor that specifies
the minimum inter-turbine distance, E(P(θ(m))) is calculated from Equation (17), based on the
wake effect model in Section 2, and TY = 365 × 24 represents the number of hours per year.
Equation (19b) requires that all the turbines should be placed within the terrain in consideration.
While a circular terrain is considered in this chapter, other two-dimensional analytical geometric
shapes can be easily considered. In addition, Equation (19c) indicates a minimum technical
distance between each pair of turbines in a multiple of the rotor diameter. Ensuring sufficient
spacing reduces interactions such as turbulence, thus diminishing hazardous loads on the turbine.
It also ensures the quality of the wake model in the previous subsection as accuracy decreases at
the near-wake phase. The factor α may be determined based on empirical knowledge as well as
the characteristics of the wind distribution, the turbine and the terrain.

The objective of Equation (19) does not explicitly consider the cost of energy production. Here,
the assumption is that the cost of energy (COE) is affected by the energy production following
Walford (2006):

COE = CI · FCR + CR

AEP
+ CO&M, (20)

where CI is the initial capital cost, FCR is the annual fixed charge rate, CR is the levelized
replacement cost, CO&M is the maintenance and operation cost of energy, and AEP is the expected
annual energy production. In other words, given that the other terms are fixed, COE can be reduced
by maximizing the expected energy production. Note that Equation (20) is only a simplified
relation between COE and energy production. Future research could consider wind farm layout
design for COE optimization with a more accurate cost model.

3.2. Complementarity reformulation of the wake effect

Although the wind farm layout design optimization model presented in Equation (19) is straight-
forward, the calculation of the objective function is based on the wake effect analysis model in
Section 2, part of which (e.g. Equations 4 and 9) are non-smooth. Thus, efficient gradient-based
NLP algorithms cannot be directly applied to solve the optimization problem in Equation (19).
Traditionally, one way of handling such an optimization model is to apply gradient-free heuristic
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10 S. Lu and H. M. Kim

approaches such as genetic algorithms. While this type of approach is robust in general, it also
suffers from the lack of guarantees for optimality.

In this subsection, a different track for handling the discreteness is presented through the
aid of CCs: the non-smooth wake effect analysis is reformulated into a set of CCs. With this
reformulation, the resulting optimization model is continuously differentiable, and standard NLP
solvers can be adapted to solve the problem efficiently with a certain level of local optimality
guaranteed by established theories in mathematical programs with complementarity constraints
(MPCCs).

3.2.1. Complementarity reformulation of non-smooth functions

Consider a continuous piecewise smooth function F(x) that is a generalization of the non-smooth
functions in Equations (4) and (9):

F(x) = Fi(x), if τi−1 ≤ ϕ(x) ≤ τi, ∀i = 1, . . . , m, (21)

where ϕ(x) is a switching function; Fi(x) is a smooth function over ϕ(x)’s range; and τ0 ≤ τ1 ≤
· · · ≤ τm are the switching thresholds. The function has an implicit aspect of discrete selec-
tion as it switches between adjacent intervals. In order to facilitate formulation, this article
represents the piecewise function as a smooth optimization problem below. Note that the ‘if’
statement in Equation (21) is converted to a smooth minimization problem; and F obtained
through Equation (22) has the same value as that obtained by (21) for any x.

F(x) =
m∑

i=1

Fi(x)zi,

min
zi

m∑
i=1

(ϕ(x) − τi−1)(ϕ(x) − τi)zi, (22)

s.t.
m∑

i=1

zi = 1,

zi ≥ 0.

Note that there is no integer requirement on the zi’s, while they take only discrete values in the
optimal solution of (22). The discrete selection is implicitly taken care of by the optimization
problem. Replacing the optimization problem (22) with its optimality conditions, which are in the
format of CCs, the piecewise smooth function is converted into its complementarity reformulation:

F(x) =
m∑

i=1

Fi(x)zi,

(ϕ(x) − τi−1)(ϕ(x) − τi) − γ − si = 0, (23)

0 ≤ zi ⊥ si ≥ 0,
m∑

i=1

zi = 1,

where γ and si represent the Lagrange multipliers corresponding to the summation and non-
negativity constraints, respectively. Note that the zi’s may take fractional values when ϕ is equal
to one of the thresholds. This problem is trivial when the piecewise function is continuous at the
switching points.
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Engineering Optimization 11

Figure 4. Reformulation of single wake speed loss: CT = 0.8, κ = 0.075, a = 2.5, b = 2.5.

3.2.2. Reformulation of single wake speed loss

It can be noted that the mathematical expression for single wake speed loss dv(d) in Equation (4)
is not a continuous function at d = 0. This is intuitive in a physical sense in that the speed
deficit is zero for any point in front of the rotor, while it becomes most prominent immediately
after the rotor (as illustrated by the solid curve in Figure 4). Although such discontinuities are
usually difficult to approximate with smooth functions, the existence of the inter-turbine distance
constraints (Equation 19c) in practice makes the near-rotor wake effect irrelevant to wind farm
layout design optimization. As a result, a smooth function can be employed to approximate the
discontinuous single wake speed loss. In general, this approximation is not likely to affect the
quality of wake loss analysis as long as it provides enough accuracy in feasible regions of the
inter-turbine distance constraints.

As a first step in reformulating Equation (4), a pair of complementary surplus and slack variables,
s1 and s2, are introduced such that they satisfy the following:

d − s1 + s2 = 0,

0 ≤ s1 ⊥ s2 ≥ 0. (24)

Since s1 equals the maximum of d and zero, Equation (4) can be simplified by replacing d with
s1. The resulting expression is shown as follows:

dv(d) = 1 − √
1 − CT

(D0/D(s1))
2 . (25)

Note that the negative case of Equation (4) is implicitly captured by the complementarity
constraint, therefore it is no longer needed.

Finally, the approximation of the discontinuous single wake speed loss is fulfilled through
introducing a logistic function:

l(s1) = 1

1 + e−a(s1−b)
. (26)

This function features a smooth transition from zero to one, the ‘slope’ and position of which
are controlled by parameters a and b, respectively. The values of the two parameters are chosen
based on the multiplier α in the inter-turbine spacing constraint. The reformulated speed loss in
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12 S. Lu and H. M. Kim

Equation (25) is multiplied by the logistic function to create the approximation. As a result, the
product of the multiplication would be a close approximation to the original speed loss function
for sufficiently large s1. The complete reformulation of Equation (4) (as illustrated by the dashed
curve in Figure 4) is given as

d̃v(s1) = 1 − √
1 − CT

(D0/D(s1))
2 l(s1),

d − s1 + s2 = 0, (27)

0 ≤ s1 ⊥ s2 ≥ 0.

3.2.3. Reformulation of the partial wake overlap

In order to reformulate the expression for the overlapping area Aj,i (Equation 9) in the partial
wake analysis model, it is first noted that Aj,i is a twice-continuously differentiable function of
R, r and |Xi,j|. This can be easily seen through calculating the limits of the Aj,i’s first and second
derivatives at |Xi,j| = R − r and |Xi,j| = R + r, respectively. Thus its proof will be omitted. To
capture the non-smooth absolute value, a pair of complementary surplus and slack variables, s3

and s4, are introduced, such that they satisfy the following:

Xi,j − s3 + s4 = 0,

0 ≤ s3 ⊥ s4 ≥ 0. (28)

As a result, s3 + s4 can be used to replace |Xi,j| in Equation (9):

Aj,i(R, |Xi,j|, r) = Aj,i

(
D(di,j)

2
, s3 + s4,

D0

2

)
. (29)

Note that R and r are also replaced by D(di,j)/2 and D0/2, respectively, since the wake is always
the larger circumference in Figure 3 for the homogenous turbine case. Equations (28) and (29)
provide the complete reformulation of the overlapping area Aj,i in the partial wake analysis model.

3.2.4. Complementarity reformulation of the wind farm layout design optimization

As a summary of this subsection, the complementarity reformulation of the wind farm layout
design optimization problem is presented, which is derived by applying the presented refor-
mulation technique to the interaction of each pair of turbines. The formulation is given as
follows:

WFLDOAIO : max

(
n∑

m=1

Pr(m) · E(P(θ(m)))

)
· TY

w.r.t. xi, yi, ∀i = 1, . . . , N , s(m)
j,i,1, s(m)

j,i,2, s(m)
j,i,3, s(m)

j,i,4, ∀m = 1, . . . , n, ∀i, j = 1, . . . , N , i 
= j

s.t. x2
i + y2

i ≤ R2
c , ∀i,

(xi − xj)
2 + (yi − yj)

2 ≥ (α · D0)
2, ∀i, j, i 
= j,

(xj − xi) cos θ(m) + (yj − yi) sin θ(m) − s(m)
j,i,1 + s(m)

j,i,2 = 0, ∀ m, ∀i, j, i 
= j, (30)
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Engineering Optimization 13

−(xj − xi) sin θ(m) + (yj − yi) cos θ(m) − s(m)
j,i,3 + s(m)

j,i,4 = 0, ∀ m, ∀i, j, i 
= j,

cj(θ
(m)) = c(θ(m))

⎛⎜⎜⎜⎜⎜⎜⎝1 −

√√√√√√√ N∑
i=1,i 
=j

Aj,i

(
D(s(m)

j,i,1)

2
, s(m)

j,i,3 + s(m)
j,i,4,

D0

2

)
D2

0/2
d̃v

2
(s(m)

i,j,1)

⎞⎟⎟⎟⎟⎟⎟⎠ ∀ m, ∀i, j, i 
= j,

where the relation between cj(θ
(m)) and the objective is dictated by Equation (17). Since cj(θ

(m))

is an intermediate result rather than a constraint, the corresponding equality will be dropped
from any subsequent optimization formulations. The above formulation is referred to as the all-
in-one (AIO) complementarity formulation, as all the design variables are handled in a single
optimization problem.

3.3. Decomposed formulation

It is noted that the formulation in Equation (30) is twice-continuously differentiable. Therefore
it can be directly solved with various continuous MPCC solvers in an AIO manner. The idea
behind AIO approaches is straightforward; however, the scenario-specific interaction variables
increase the size of the problem, and generally make the direct solution of the AIO problem
inefficient. An alternative to the AIO approach is a decomposition-based approach Balling and
Sobieszczanski-Sobieski (1996), where the original AIO problem is decomposed into a set of
interrelated subproblems, and solved through an iterative process of subproblem optimization
and coordination among them. Using the decomposition-based approach can be advantageous, as
it decomposes the AIO problem into smaller subproblems that are usually easier to solve while
limiting the communication among subproblems only to where necessary via linking variables.

Although most existing approaches in the research area of decomposition-based design opti-
mization are presented for NLP models, the research area has recently connected to MPCCs under
the notion of MDO-CC. Lu, Shanbhag, and Kim (2008) formally stated the research problem of
MDO-CC and presented an augmented Lagrangian decomposition (ALD) approach, with the con-
nection between the stationarity conditions of the decomposed formulation and those of the AIO
formulation established; Lu and Kim (2010) proposed a regularized inexact penalty decomposi-
tion approach for MDO-CC and showed that existing theories can be adapted to show convergence
of the presented algorithm.

In derivation of a decomposed formulation, the augmented Lagrangian decomposition (ALD)
approach Lu, Shanbhag, and Kim (2008) is followed: the two-dimensional coordinates of each
turbine xi and yi are taken as linking variables; a local copy of the linking variables, x(m)

i and
y(m)

i , is first introduced to each relevant scenario k, together with a set of consistency constraints;
then the consistency constraints are relaxed, and the corresponding violation is penalized in the
objective function through inconsistency variables; after that, the problem is decomposed into
a bi-level formulation composed of a system level coordination problem and a subsystem level
coordination problem including n separated individual scenario subproblems. The mth scenario
of the multi-scenario decomposed formulation is given as

WFLDOsub, m : max
(
Pr(m) · E(P(θ(m)))

) · TY + ε(m)

w.r.t. ε(m), x(m)
i , y(m)

i , ∀i = 1, . . . , N , s(m)
j,i,1, s(m)

j,i,2, s(m)
j,i,3, s(m)

j,i,4, ∀i, j = 1, . . . , N , i 
= j

s.t.
(

x(m)
i

)2 +
(

y(m)
i

)2 ≤ R2
c , ∀i, (31)
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14 S. Lu and H. M. Kim

Figure 5. Decomposed problem structure of wind farm layout design optimization.

(
x(m)

i − x(m)
j

)2 +
(

y(m)
i − y(m)

j

)2 ≥ (α · D0)
2, ∀i, j, i 
= j,(

x(m)
j − x(m)

i

)
cos θ(m) +

(
y(m)

j − y(m)
i

)
sin θ(m) − s(m)

j,i,1 + s(m)
j,i,2 = 0, ∀i, j, i 
= j,

−
(

x(m)
j − x(m)

i

)
sin θ(m) +

(
y(m)

j − y(m)
i

)
cos θ(m) − s(m)

j,i,3 + s(m)
j,i,4 = 0, ∀i, j, i 
= j,

ε(m) ≥
N∑

i=1

[
v(m)

i,x

(
xi − x(m)

i

)
+w(m)

i,x

(
xi − x(m)

i

)2 + v(m)
i,y

(
yi − y(m)

i

)
+ w(m)

i,y

(
yi − y(m)

i

)2
]

,

where ε(m) is an inconsistency variable to maintain the regularity condition of the deviation con-
straints Sobieszczanski-Sobieski (1995). The inconsistency between linking variables is penalized
by the augmented Lagrangian penalty function: wi,x and wi,y are the respective weight factors
assigned to consistency constraints xi − x(m)

i = 0 and yi − y(m)
i = 0; vi,x and vi,y are estimations

of the respective Lagrange multipliers corresponding to the two consistency constraints.
The formulation of the upper level coordination problem is given as

WFLDOsys : min ε

w.r.t. xi, yi, ε (32)

s.t. ε ≥
n∑

m=1

{
N∑

i=1

[
v(m)

i,x

(
xi−x(m)

i

)
+w(m)

i,x

(
xi−x(m)

i

)2+v(m)
i,y

(
yi−y(m)

i

)
+w(m)

i,y

(
yi−y(m)

i

)2
]}

.

The decomposed problem structure is illustrated in Figure 5. In the next section, a solution
algorithm based on the above MDO-CC decomposed formulation will be presented to solve the
original wind farm layout design optimization problem.

4. Hybrid solution algorithm

It is noted that the MDO-CC decomposed formulation presented in Equations (31) and (32)
is twice-continuously differentiable and can thus be solved by decomposition-based MDO-CC
approaches Lu, Shanbhag, and Kim (2008) ,Lu and Kim (2010). Generally, these approaches can
generate locally optimal layouts in a continuous setting; they also directly handle constraints such
as minimum inter-turbine distance and region boundary for the case where compact layouts are
expected. However, these approaches are not developed to obtain global optimal solutions. On the
other hand, traditional metaheuristic approaches, as discussed in Section 1, are known for their
capacity of global exploration, but also that they suffer from lack of guarantees of optimality as
well as inefficient constraint handling. The foregoing discussion highlights the complementary
properties of GAs and the MDO-CC approach, and suggests a solution algorithm in the form
of a hybridization between the two approaches. In this section, a hybrid solution algorithm that
combines a bi-objective GA and a decomposition-based MDO-CC local refinement approach
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Engineering Optimization 15

is presented to solve the wind farm layout design optimization problem. The MDO-CC local
refinement approach is described in Section 4.1; the bi-objective GA employed is explained in
Section 4.2; and the hybridization scheme is presented in Section 4.3.

4.1. Decomposition-based MDO-CC local refinement approach

As can be noted in Equations (31) and (32), the MDO-CC decomposed formulation of wind
farm layout design optimization is parameterized by weighting factors. Solving the decomposed
problem under fixed weights does not usually lead to feasible solutions of the original AIO
problem. Therefore, a weight updating scheme is necessary so that the successive solutions of the
decomposed formulation converge to an optimal solution of the original AIO problem.

The presented decomposition-based MDO-CC local refinement approach follows the alter-
nating direction method of multipliers Bertsekas (2003), Tosserams, Etman, and Rooda (2007):
in each iteration, the individual scenario subproblems in Equation (31) are first solved either
sequentially or in parallel under fixed penalty parameters; then the system (upper) level coordina-
tion problem in Equation (32) is solved under the same penalty parameter settings. After that, the
penalty parameters are updated based on the violation of the linking variable consistencies. Under
the augmented Lagrangian formulation, the violation of the consistency constraints, xi − x(m)

i = 0
and yi − y(m)

i = 0, can be reduced by taking the corresponding Lagrange multiplier estimates, v(m)
i,x

and v(m)
i,y , close to their values associated with the optimal AIO solution. In order to achieve this,

a linear updating scheme for selecting v(m)
i,x and v(m)

i,y is given by

(v(m)
i,x )(k+1) = (v(m)

i,x )(k) + 2(w(m)
i,x )(k)(w(m)

i,x )(k)(xi − x(m)
i )(k), ∀m, i, (33)

(v(m)
i,y )(k+1) = (v(m)

i,y )(k) + 2(w(m)
i,y )(k)(w(m)

i,y )(k)(yi − y(m)
i )(k), ∀m, i,

where the superscript (k) indicates the value of a variable or an expression at the kth iteration.
Additionally, the weight factors are updated following a linear growth formula:

(w(m)
i,x )(k+1) = β · (w(m)

i,x )(k), ∀m, i, (34)

(w(m)
i,y )(k+1) = β · (w(m)

i,y )(k), ∀m, i,

where β is a growth factor.
The iteration is terminated when the following condition is satisfied:

n∑
m=1

‖z − z(m)‖2
2

1 + ‖z‖2
< εtol (35)

where z = [x1, . . . xN , y1, . . . , yN ] is the system level value of the linking variables, z(m) =
[x(m)

1 , . . . x(m)
N , y(m)

1 , . . . , y(m)
N ] is the subsystem level value of the linking variables, and εtol is a

tolerance parameter. The solution algorithm is illustrated in Figure 6.

4.2. A bi-objective genetic algorithm for wind farm layout design optimization

This subsection describes the GA employed to solve the wind farm layout design optimization
problem. The solution representation is first stated, followed by a constraint handling mechanism.
Then, the flow of the algorithm is stated, and the genetic operators are addressed.
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16 S. Lu and H. M. Kim

Figure 6. Alternating direction approach for MDO-CC local refinement.

Solution representation

A solution, referred to as an individual, to the original wind farm layout design optimization
problem in Equations (19) is represented by a binary string composed of N substrings:

bx = (bx1, by1, . . . , bxN , byN ), (36)

where bxi, byi are two binary substrings of lb bits each, representing a fraction number between
zero and one, respectively. The two fraction numbers are converted to the coordinates of a turbine,
using the upper and lower bounds of the x- and y-coordinates. For example, let exi be the fraction
represented by bxi, then xi is calculated as

xi = xmin + exi · (xmax − xmin), (37)

where xmin and xmax are the minimum and maximum x-coordinate values of the feasible region.
Note that this representation does not assume a grid layout, as do most GAs for wind farm layout
design. Therefore the constraints must be handled explicitly to ensure feasibility. The value of lb
may depend on the expected accuracy as well as the compactness of the farm: if a more compact
layout is required, higher accuracy might be necessary to facilitate constraint handling.

Constraint handling mechanism

A constraint handling mechanism is introduced in the GA following a typical bi-objective setting.
Specifically, the maximization of wind energy production and the minimization of constraint
violation are considered as two conflicting objectives. For simplicity of notation, the maximization
of wind energy production is converted into the minimization of the its negative, so that both
objectives are to be minimized. The objectives are stated as follows:

min {O1(bx), O2(bx)} , (38)

where

O1(bx) = −
n∑

m=1

Pr(m) · E(P(θ(m))), (39)
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Engineering Optimization 17

O2(bx) =
N∑

i=1

max
{
0, (x2

i + y2
i − R2

c)
}

+
N∑

i=1

N∑
j=1,j 
=i

max
{
0, [(c · D0)

2 − (xi − xj)
2 + (yi − yj)

2]} . (40)

In order to handle the constraints, an elite set is introduced to approximate the Pareto frontier
that characterizes the trade-off between the two objectives. In the process of optimization, the
elite set is updated in each iterate through inserting all the non-dominated individuals from the
population into the set and removing all the dominated individuals from the set. Here, an individual
bx1 dominates another individual bx2, represented as bx1 � bx2, if the following conditions are
satisfied:

O1(bx1) ≤ O1(bx2), O2(bx1) ≤ O2(bx2), (41a)

O1(bx1) < O1(bx2) or O1(bx1) < O1(bx2). (41b)

An individual is called non-dominated if it is not dominated by any of the individuals evaluated
so far.

Algorithm description

The GA employed for wind farm layout design optimization is described inAlgorithm 1. Here, two
terminating criteria are considered: the maximum number of iterations genmax and the maximum
number of iterations without improvement gennImp, max. The algorithm is terminated when either
criterion is satisfied.

BEGIN
Step 0: Initialize empty parent set SP, population S0 and elite set SE ; randomly

generateN0 individuals to fill S0; gen = 1; gennImp = 0; bxmin = {}
Step 1: REPEAT

Step 1.1: Insert all the non-dominated solutions in S0 into SE ;
remove dominated solutions from SE .

Step 1.2: Assign fitness to individuals in SE and S0.
Step 1.3: Select NP individuals from S0 and SE to fill SP.
Step 1.4: Generate N0 new individuals to form the new population S0,

each by applying crossover to two individuals randomly selected
from SP, with probability PX .

Step 1.5: Mutate each individual in S0, with probability PM .
Step 1.6: Find the individual bx∗ with the minimum O2;

IF bxmin = {} OR O2(bx∗) < O2(bxmin),
THEN bxmin = bx∗; gennImp = 0.
ELSEIF O1(bx∗) < O1(bxmin) AND O2(bx∗) < O2(bxmin) ∗ (1 + εtol)

THEN bxmin = bx∗; gennImp = 0.
ELSE gennImp = gennImp + 1.

Step 1.7: gen = gen + 1
UNTIL gen > genmax OR gennImp = gennImp, max

END
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18 S. Lu and H. M. Kim

Fitness assignment

The fitness of an individual bx in the elite set SE is defined as

fitness(bx) = Nl(bx)

NO
, (42)

where Nl(bx) denotes the number of individuals in the population SO, which is dominated by bx.
After fitness values have been assigned to all the individuals in the elite set SE , the fitness of an
individual bx′ in the population SO is then defined as

fitness(bx′) =
∑

bx∈SE ,bx�bx′
fitness(bx) + 1, (43)

where the first term on the right-hand side is the sum of the fitness of all the individuals in SE that
dominate bx. The value one is added to ensure that individuals in the elite set SE have a better
fitness than individuals in the population SO.

The combination of the constraint handling mechanism and fitness assignment method
employed is also known as the strength Pareto approach. The approach has been applied to
an evolutionary strategy algorithm by Zitzler and Thiele (1999).

Crossover, mutation and selection

Both the crossover and mutation are performed on a substring basis, i.e. they are applied between
each corresponding pair of substrings. A standard two-point crossover operator and a bit mutation
operator are employed. The two operators are applied with a crossover probability PX and a
mutation probability PM , respectively.

In addition, a tournament selection with replacement of size NT is employed to qualify indi-
viduals for reproduction: NT individuals are selected randomly, and the individual with the best
fitness value is inserted into SP.

4.3. Hybridization scheme

The MDO-CC local refinement algorithm is combined with the above described GA in the fol-
lowing manner: when the maximum number of iterations without improvement gennImp, max is
reached, the local refinement is applied to the NR most feasible individuals in the elite set SE . The
solution with best objective value from the local refinements is translated into an individual bx∗
which is then compared with the most feasible individual in the elite set bxmin. If the following
criteria are satisfied:

O2(bx∗) < O2(bxmin) or O1(bx∗) < O1(bxmin) · (1 + εtol), (44)

then bx∗ is inserted into the elite set SE ; after that, all the dominated individuals in the elite set
SE are removed from the set and the GA continues with a zero gennImp. Note that a truncation
error may occur when a solution is translated to an individual. If Equation (44) fails, then the GA
terminates. Figure 7 shows an overall flowchart of the presented solution algorithm, including the
GA and the local refinement.

5. Numerical case study

In this section, a numerical study based on an illustrative wind farm is presented to demonstrate the
presented decomposition-based MDO-CC approach as well as the hybrid optimization algorithm.
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Engineering Optimization 19

Figure 7. Flowchart of the presented hybrid GA-MDO-CC approach.

Table 1. Distribution of wind direction and
speed considered for the illustrative case.

m θ(m) k(θ(m)) c(θ(m)) p(m)

1 30◦ 2 7 0.2
2 90◦ 2 5 0.16
3 150◦ 2 5 0.16
4 210◦ 2 5 0.16
5 270◦ 2 5 0.16
6 330◦ 2 4 0.16

5.1. Illustrative case

This subsection considers an illustrative case in which 10 identical turbines are to be placed within
a circumference of radius Rc = 500 m. The diameter of the turbines’ rotor plane D0 = 77 m and
the spacing factor for minimum inter-turbine spacing is α = 4. Apparently, such a parameter
setting requires a compact layout of turbines; hence the constraint handling is not a trivial issue.
Other parameters of the wind turbine are given as follows: rated capacity pwn = 1500 kW; cut-in
wind speed Vi = 3.5 m/s; rated wind speed Vr = 14 m/s; cut-out wind speed Vo = 23.5 m/s; hub
height z = 80 m; trust coefficient CT = 0.8; and decay constant of the wake κ = 0.075. The wind
scenario shown in Table 1 is considered. To facilitate the calculation of wind energy production,
a numerical integration is conducted with a speed interval of 0.5 m/s.

5.2. Numerical results

The illustrative case described above is used to test the presented MDO-CC local refinement
approach as well as the presented hybrid GA-MDO-CC algorithm. Specifically, the MDO-CC
approach is first verified through comparing its results with those of an MPCC solver applied to
the AIO complementarity formulation; then the optimization results from the proposed hybrid
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20 S. Lu and H. M. Kim

GA-MDO-CC algorithm are presented in order to demonstrate its effectiveness; after that, the
results of a sensitivity analysis performed on one of the solutions obtained is provided for insight
into the layout design problem.

MDO-CC local refinement algorithm

The first numerical study is conducted to show the numerical behaviour of the presented MDO-CC
approach. The MDO-CC approach is applied to solve the wind farm layout design optimization
problem in the illustrative case study from 10 randomly generated initial points. Numerical results
indicate that, for each initial solution tested, the MDO-CC approach converges to a solution
identical to a local optimal solution to theAIO complementarity formulation in Equation (30). The
local optimality of the solutions obtained is numerically verified by feeding their corresponding
AIO solution to an MPCC solver applied to the AIO complementarity formulation. Here both the
AIO problem and the subproblems of the MDO-CC approach are solved with the KNITRO� 5.0
solver in a MATLAB� 7.4 environment. The program runs on an Intel Core 2 Duo CPU 3.16 GHz,
4 GB memory. The MDO-CC approach employs a β-value of 1.1.

In addition, the KNITRO solver is used to solve the AIO formulation from the same set of initial
points against which the MDO-CC approach is tested. It can be noted that the AIO approach and
the MDO-CC approach may converge to different solutions when applied to the same initial
solution; however, both solutions are locally optimal. The average computation times associated
with the two algorithm are compared in Table 2. This table indicates that the average computation
time taken by the MDO-CC approach is approximately a third of that taken by the AIO MPCC
approach; this result is obtained when the number of wind scenarios in the illustrative case is six.
Here, the computation time of the MDO-CC approach is measured under serial implementation,
i.e. the computation time is the summation of all the subsystem computation times. A parallel
implementation will generally lead to more computational savings.

Optimization results

A second numerical study is performed to verify the presented hybrid GA-MDO-CC optimization
algorithm. The algorithm is applied to the illustrative case study for 10 executions, all of which
generated feasible solutions to the case problem. The average performance of the algorithm is
presented in Table 3. For verification purposes, the problem is also solved by the GA presented in
Section 4.2 without the MDO-CC local refinement. The GA was tested for 20 trials, 9 of which
generated feasible solutions. Of the 9 successful executions, the average energy production and

Table 2. Average computation times associated with the
MDO-CC approach and the AIO MPCC approach.

Solution algorithm MDO-CC AIO MPCC
Average computation time (s) 964.6 3278.5

Table 3. Numerical comparison between the hybrid algorithm and the GA.

Solution algorithm GA-MDO-CC GA

Average energy production (kW h) 1.1426 × 109 1.1168 × 109

Average number of iterations to find first feasible solution 417 838
Average number of iterations to terminate 1267 3000
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Figure 8. Comparison between convergence paths: hybrid versus GA.

the average number of iterations it took to obtain the first feasible solution are also presented in
Table 3.

According to Table 3, the hybrid optimization algorithm generations designs have an average
energy production 2.3% higher than those of the designs from the GA. The ideal energy generation,
namely 10 times the energy generation of a turbine in the free steam, is 1.1834 × 109 kW h.
Therefore, the introduction of the hybridization achieves a 38.61% reduction in wake loss: 3.45%
compared with 5.62%. In addition, the hybrid algorithm tends to find feasible solutions quicker;
and it can be terminated earlier compared with the GA, when satisfactory solutions are obtained.
A typical path of convergence of each algorithm is plotted in Figure 8, where the y-axis represents
the sum of the two objectives, i.e. the expected energy generation and the constraint violation.

Note that the numerical case study under consideration is relatively tightly constrained; it thus
requires relatively fewer turbines and more effective constraint handling. For such a case study,
the presented hybrid approach shows improved solution quality and reduced computation time
over the GA alone. On the other hand, in cases where the number of turbines is large and spacing
is not a critical concern, the incorporation of the MDO-CC approach may not always improve
efficiency. This is because the time complexity of the MDO-CC local refinement is generally of
a higher order compared to that of the fitness evaluation operation.

The GA is implemented with a population size of 120, a parent set size of 20, a crossover
probability of 0.9, a mutation probability of 0.1, and a tournament size of 4. For the hybrid
implementation, a maximum number of iterations without improvement equal to 100 is employed;
and the local refinement is applied to the 2 best individuals in the elite set. When the GA is
executed without local refinement, both the maximum number of iterations and the maximum
number of iterations without improvement are set to be 3000, i.e. there is no early termination
due to premature convergence. The results are generated on the same computer platform and
with the same software packages as used for the numerical test on the MDO-CC local refinement
algorithm.

When interpreting the optimization results, it should be noted that the reformulation technique
does not come free of additional computational expense. As indicated by the numerical results, the
presented decomposition-based approach can help improve computational efficiency. However,
as the scale of the wind farm increases, the additional computation expense required by the
reformulation will increase. For this reason, the authors believe that the reformulation approach
is more suitable for relatively tightly constrained (geographically and space-wise) problems.
For such problems, the incorporation of the reformulation approach is more likely to improve
constraint satisfaction as well as efficiency and effectiveness in general.
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Figure 9. A locally optimal layout of the wind farm case study.

Generally speaking, the computational cost incurred per MPCC solution would increase faster
with respect to problem scale than the computation cost of fitness evaluation in GA does. This
is because the latter is generally polynomial, while the former is not. Therefore, for large-scale
problems where spacing is not of critical concern, the reformulation may not help to improve
efficiency in general. But it may still help improve solution quality, especially in the later stages
of metaheuristic algorithms, when applied reasonably.

Sensitivity analysis

Note that the two sets of constraints considered in the layout design involve parameters determined
in an earlier stage of the wind farm project: the regional constraints depend on the region’s radius
(or other parameters when some analytical geometric shapes other than circles are addressed); and
the inter-turbine spacing constraints depend on the spacing factor α. While these parameters can
influence the wind farm layout significantly, their determination may require empirical knowledge
as well as considerations beyond the scope of layout design, such as land purchase, environmental
impact, maintenance implications, etc. In response to this concern, a third numerical study is
presented to investigate the effect of these parameters on the wind farm layout design decision.
The results may also provide some useful insight into the proper selection of these parameters.

The sensitivity analysis is applied to one of the locally optimal designs obtained with the
presented algorithm. The turbine locations (plotted in Figure 9) are given as

x = (−43.65, 170.05, 63.70, −386.27, −456.04, −204.07, −357.78, 103.09, −144.11, −158.42,

466.44, 167.49, 194.46, −82.76, −259.21, 419.77, 368.22, −337.61, 79.69, 493.33)T. (45)

This layout indicates that turbines T3, T8, T9 and T10 are placed on the boundary of the region and
that the inter-turbine spacing constraints are active between T2 and T5, between T2 and T9, as well
as between T7 and T9. The Lagrangian multipliers under the negative null form (i.e. minimization
of the negative of the objective with all constraints converted into less than or equal to constraints)
corresponding to the seven active constraints are 135.7106, 6.3072, 135.6525, 148.4861, 63.8596,
158.5221 and 322.4924, respectively.

The effect of region radius on energy production is considered first. Theories relating to
Lagrangian multipliers indicate that, if no constraint activity is changed, a small increment �Rc

in the region radius will result in an additional energy production of

−(135.7106 + 6.3072 + 135.6525 + 148.4861)(�R2
c + 2Rc�Rc). (46)

The MDO-CC approach is applied to the above layout design, with a region radius increased from
500 to 500.2 m. The result indicates an incremental energy production of 8.4972 × 104 kW h, very
close to the 8.4096 × 104 kW h suggested by Equation (47).

In a similar manner, the effect of the spacing factor α on the energy production is analysed.
The Lagrange multipliers imply that a decrease of �α in α will lead to the following additional
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energy production if no constraint activity is changed:

−(63.8596 + 158.5221 + 322.4924)(�α2 + 2α�α)D2
0. (47)

The follow-up optimization results with an α of 3.95, an 0.05 decrement, shows that the expected
energy production is increased by 1.2790 kW×105 h, compared with the 1.2877 × 105 kW h
calculated from Equation (47).

A comprehensive consideration of energy production and other factors may lead to a more
reasonable determination of the parameters. The sensitivity analysis shown above is made pos-
sible by the continuous differentiability of the presented formulation. With this formulation, the
parameters’ quantitative impact on the objective is directly available in the optimization results.
In the absence of a continuously differentiable model, sensitivity analysis will require repeated
optimizations under varying parameters, and thus be extremely inefficient. Such a procedure may
also be unreliable due to the stochastic nature of current wind farm layout design optimization
algorithms.

6. Conclusions

As a result of the wake effect, the layout of turbines in a wind farm has a significant impact on the
performance of the farm. However, due to the complexity of wind farm layout design, continu-
ously differentiable optimization models are not available for this problem. This article presented
a decomposition-base complementarity model for wind farm layout design optimization. Com-
plementarity constraints were introduced so that the non-smooth wake effect can ultimately be
considered in a continuously differentiable optimization formulation; and a decomposed for-
mulation was derived through multi-scenario decomposition. Numerical analysis showed that the
presented mathematical program with complementarity constraints (MPCCs) approach effectively
generated locally optimal solutions to a test problem and that the presented decomposition-based
multi-scenario design optimization with complementarity constraints approach reduced the com-
putation time to obtain locally optimal solutions compared to the all-in-one MPCC approach. The
proposed multi-scenario decomposition approach is integrated with a simple bi-objective genetic
algorithm (GA) to combine its local optimization capacity with the global exploration capabil-
ity of the GA. The hybrid algorithm achieved better solutions and reduced computation times
compared to the GA, solving a numerical case study which featured a relatively tight boundary
constraint that required a relatively tight layout. In addition, sensitivity analysis results on param-
eter setting changes were able to be derived as a result of the continuous differentiability of the
complementarity reformulation.
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