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Analytical Target Setting: An
Enterprise Context in Optimal
Product Design
In this article the process of rigorously setting supersystem targets in an enterprise
context is explored as a model-based approach termed “analytical target setting.” Engi-
neering design decisions have more value and lasting impact if they are made in the
context of the enterprise that produces the designed product. Setting targets that the
designer must meet is often done at a high level within the enterprise, however, with
inadequate consideration of the engineering design embodiment and associated cost. For
complex artifacts produced by compartmentalized hierarchical enterprises, the challenge
of linking the target setting rationale with the product instantiation is particularly de-
manding. The previously developed analytical target cascading process addresses the
problem of translating top level design targets into design targets for all systems in a
multilevel hierarchically structured product, so that local targets are consistent with each
other and top targets can be met as closely as possible. The effectiveness of linking
analytical target setting and target cascading is demonstrated in a hybrid electric auto-
motive truck vehicle example. The manufacturer introduces a new product (hybrid elec-
tric truck) in the market under uncertainty in fuel prices during the life cycle of the
vehicle. The example demonstrates a clear interaction between the enterprise decision
making and the engineering product development. �DOI: 10.1115/1.2125972�
Introduction
In modeling the product development process for the purposes

of this article, the enterprise is defined as the organization that
produces the designed artifact. The enterprise considers market-
ing, production, and engineering from the initial design phase
through the final marketing and release of the product. For sim-
plicity, marketing and production considerations are defined as
product planning, and engineering design is defined as product
development. Product planning determines the need for a product
in the marketplace and attempts to communicate product attributes
for market success to the development group. The development
group conceptualizes a design and progresses towards the final
design, while the planning group concurrently builds their strategy
to market and produce the product based on the product attributes
initially given to the engineers. Our hypothesis is that lack of
proper interaction between the planning and development teams
results in “suboptimal” enterprise decision-making. For example,
as the two processes evolve independently, it is possible that the
planning group prepares a marketing and production strategy suit-
able to a design that may not be achievable by the technical de-
velopment team. The enterprise has then two choices: Proceed
with the development team’s design with the original marketing
and production strategy or redesign the product with compromised
performance while incurring costs and delays that may allow
competitors to enter the market first.

In a hierarchical structure of the product design process, differ-
ent decision levels within the enterprise can be identified, along
with the appropriate fidelity of the design information used to
make these decisions �1� Product planning works at a high �top�
level and sets product design targets using high-level technical
information. Decisions are economic ones based on expected rev-
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enues and current cost structure, and technical requirements are
set to maximize profit. These top-level requirements are passed to
the development team as targets to ensure technical feasibility
more thoroughly and design the product embodiment. The devel-
opment team uses target cascading to determine the “best” fea-
sible design, i.e., a design with minimum deviation from the top-
level targets achieved with proper coordination of system designs
and associated local targets. A successful target cascading process
will allow further development of systems to proceed indepen-
dently and concurrently, as long as each system design team does
not violate the agreed upon common decisions. Using the feasi-
bility information provided by target cascading, the economic
analysis in product planning can be repeated and initial business
decisions can be updated. The methods used here are all based on
analytical �meaning quantitative� models, and so the terms ana-
lytical target cascading �ATC� and analytical target setting �ATS�
are used to describe the relevant decision models.

Analytical Target Cascading. In this work the engineering
product development problem is viewed as a hierarchical process
and solved using the Analytical Target Cascading �ATC� �2–5�, a
hierarchical multilevel optimization approach. In the context of
hierarchical vs nonhierarchical decomposition, a key difference
between ATC and many multilevel MDO formulations, including
collaborative optimization �CO� �6�, is that, in ATC, the original
problem is cast into an object-based decomposition. Hierarchical
MDO research �e.g., CO� has been concerned with decomposing a
problem typically by aspect into a series of problems, all at a
single level, that are connected through linking variables, and then
imposing a hierarchical framework in order to coordinate the link-
ing variables. In contrast, Kronsjo’s dual formulation �7� and ATC
impose a hierarchical decomposition first and then propose an
algorithm �i.e., coordination� to solve the decomposed problem.
Lassiter et al. �8� have placed ATC in the historical context of

Lagrangian decomposition and coordination method for large-

006 by ASME Transactions of the ASME



scale systems.
In the context of multidisciplinary model decomposition, most

MDO formulations are dependent on the way analysis models
�e.g., simulation codes� are decomposed and coordinated. In this
article, an analysis model is differentiated from a design model.
Analysis model is defined as a functional relation that takes input
and generates output. For example, analysis models are simula-
tions, closed form equations, or spreadsheet. Design model is de-
fined as an optimization model that takes input parameters to op-
timize the objective and uses analysis models to evaluate
objective and constraint functions. In CO, for each analysis
model, a design problem is imposed and then the overall coordi-
nation problem is placed on top of these multiple design prob-
lems. The role of the top level problem is to coordinate differences
of the linking variables among the lower level problems. In ATC
design models are decomposed in a hierarchical manner. Analysis
models evaluated by design models can be placed at different
levels of the problem hierarchy. In a bilevel hierarchy the distinc-
tion between CO and ATC may not be as clear as it would be for
multilevel hierarchies.

An advantage of ATC for product development is that it can
model a multilayered organizational decision making infrastruc-
ture, where subsystems and components can be supplied by dif-
ferent organizational units or outsourced to independent compa-
nies. In an ATC-decomposed design problem, if more than one
analysis model exist, a MDO formulation such as CO can be
adopted to solve it. Thus, ATC and MDO methods are complimen-
tary in that an MDO approach can be employed to solve the ATC-
decomposed subproblems.

Before proceeding with individual problem formulations, some
nomenclature and definitions are given. A vector of targets T� is
provided from product planning. The supersystem �i.e., the truck
vehicle in the study presented later� and the systems it is com-
posed of are referred to as the “elements” of the hierarchy. Each
element is associated with an analysis model r used to estimate a
vector of responses R that are assumed to be functions of local
design variables x �associated exclusively with the element�, link-
ing design variables y �common with variables of other elements
at the same level and having the same “parent” element�, and
responses of lower-level elements. Response and linking variable
values are passed up and down during the ATC process for coor-
dination and design consistency reasons; superscripts �·�U and �·�L

denote values passed down and up from the upper and lower
levels, respectively.

At the supersystem �vehicle� level, responses R� must match
desired product planning design requirements T� from the analyti-
cal target setting phase. These responses are assumed to be func-
tions of supersystem design variables x� and system responses Rsi
for i=1, . . . ,ns systems, i.e., R�=r��x� ,Rs1

, . . . ,Rsns
�. To deter-

mine target values for system responses, values for supersystem
design variables, and to coordinate system linking variables, a
minimum deviation optimization problem is formulated as

minx̄�
�R� − T�� + ��

R + ��
y

subject to �i=1

ns �Rsi
− Rsi

L� � ��
R

�i=1

ns �ysi
− ysi

L� � ��
y

g��R�,x�� � 0

h��R�,x�� = 0 , �1�

where x̄�= �x� ,Rs1
, . . . ,Rsns

,ys1
, . . . ,ysns

,��
R ,��

y� is the vector of

optimization variables and �·� is some norm. The tolerance vari-
able ��

R coordinates system responses Rsi
, determined at the su-
persystem level, with the vector of the ith system response values
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Rsi

L passed up to the supersystem. The tolerance variable ��
y coor-

dinates system linking design variables for the ith system ysi
, de-

termined at the supersystem level, with the vector of the ith sys-
tem linking design variable values ysi

L passed up to the
supersystem. Vector functions representing supersystem inequality
and equality performance constraints are g� and h�, respectively.

Once optimal values for the system responses Rsi
and system

linking design variables ysi
, i=1, . . . ,ns, are determined by Eq. �1�

at the supersystem level, they are cascaded down to the system
level as target values Rsi

U and ysi

U, respectively.
At the system level, ns individual minimum deviation optimi-

zation problems are formulated to determine system design vari-
ables and system linking variables. System responses are assumed
to be functions of system local design variables and system link-
ing design variables, i.e., Rsi

=rsi
�xsi

,ysi
�. Note that Rsi

is a vector
of responses resulting from decisions at the ith system level, but a
vector of decisions in the supersystem level. The optimization
problem for each system si, i=1, . . . ,ns, is

min
x̄si

�Rsi
− Rsi

U� + �ysi
− ysi

U�

subject to gsi
�Rsi

,xsi
,ysi

� � 0

hsi
�Rsi

,xsi
,ysi

� = 0 , �2�

where x̄si
= �xsi

,ysi
� is the vector of optimization variables, xsi

is
the vector of system design variables exclusively associated with
the ith system, Rsi

U is the vector of system response target values
for the ith system passed down from the supersystem. The vector
of system linking design variable values for the ith system passed
down from the supersystem is ysi

U and vector functions represent-
ing inequality and equality design constraints for the ith system
are gsi

and hsi
, respectively.

Once optimal values for the system responses Rsi
and system

linking design variables ysi
, i=1, . . . ,ns, are determined by solv-

ing Eq. �2� at the system level, they are passed up to the super-
system as parameters Rsi

L and ysi

L , respectively.

Analytical Target Setting. In analytical target cascading the
targets T� are assumed to be given. In the statistics and operations
research literature �9–13� there have been various attempts to
model the target setting process but not in conjunction with a
target cascading process. In the organizational behavior literature,
target setting is being used as a means to increase employee per-
formance �14–16�. More relevant to the work here is the use of a
collaborative optimization framework by Gu et al. �17�, where a
profit utility stands as an objective at the top-level of the hierar-
chy. Other approaches in linking engineering to business decisions
�17–40� use a nonhierarchical approach where net present value of
future profits is directly linked to design variables. Both situations
assume an integrated decision-making process across the
organization.

In the approach presented here, a partitioned decision-making
process is modeled: Decisions at the top-level of the hierarchy
�ATS� are expected results from the lower levels �ATC�. The link-
ing of setting and cascading targets envisioned here is illustrated
in Fig. 1.

The ATS problem is defined as

max
T�,xe

��T�,xe�

subject to ge�T�,xe� � 0

he�T�,xe� = 0 �3�

where � is economic profit, T� is a set of target values, xe is the

vector of local enterprise variables, and ge and he are vectors of
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enterprise and high-level technical constraints. At this level of the
hierarchy the engineering information is a high-level “abstraction”
of the trade-offs among the technical decisions T� provided by
product engineers. Solution of the ATS problem provides optimal
values for the targets T�, which are passed down as fixed param-
eters to the supersystem ATC problem. After the ATC process has
converged, a feasible design is produced. A reduced ATS problem
can then be solved, where the T� are now fixed and set to R�

*, and
the enterprise variables xe are reoptimized.

max
xe

��xe�

subject to ge�xe� � 0

subject to he�xe� � 0. �4�
This is one of several possible scenarios that can be used to link
the ATS and ATC problems. At this stage, the mathematical prop-
erties of what is effectively a decomposition strategy are not being
addressed.

Enterprise Design of a Medium-Class Truck. We will dem-
onstrate Eqs. �1�–�3� for a commercial manufacturer of medium
and heavy duty diesel trucks. This enterprise is operating in a
mature industry with established demand from freight and small-
package ground delivery services firms. Currently the truck manu-
facturer has undertaken the development of hybrid electric pow-
ertrains. Decision-makers must determine a product design and a
production level that would lead to a profitable commercialization
of the emerging technology.

This new product introduction calls for interaction of many
decision-makers across the enterprise hierarchy �see Fig. 2�. At

Fig. 1 Coordination and information flow in analytical target
setting „ATS… and cascading „ATC… processes

Fig. 2 Decision-making and technical information used at

each level of the organization’s hierarchy
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the top level the product planning team will decide on the �i� level
of production output and �ii� powertrain hybridization cost. Prod-
uct planning decisions take the form of requirements for the next
level, the product development.

The product development team uses high fidelity engineering
information to determine the technical performance as well as
feasibility of the design as specified by the performance require-
ments. Subunits within the powertrain team follow their own
decision-making process to guarantee feasibility of suspension
and transmission.

The next section describes in detail how the ATS problem Eq.
�3� is constructed for the truck problem, by taking into account
product demand information, cost estimates, and macroeconomic
uncertainty. The implementation of a bilevel target cascading pro-
cess for the truck vehicle is then presented, and results are dis-
cussed, justifying the value of the proposed approach.

Truck Design Study: Analytical Target Setting
The role of the engineering information involved at the ATS

level is to augment the intuition of the decision-makers. The trade-
off here is between powertrain hybridization cost and fuel
economy improvement. Increasing the degree of hybridization in-
creases the power the electric system provides for propulsion,
improves the fuel economy, and increases cost. A rough approxi-
mation of expenditures due to powertrain hybridization for a per-
cent improvement of fuel economy should answer the following
question: How much does the enterprise need to spend for one
percent improvement of fuel economy?

Hybridization cost CH consist of battery and motor size costs
calculated using the following equation:

CH = cH0 + cH1 � �kW-hr� + cH2 � �Peak kW� . �5�

Coefficients cH0, cH1, and cH2 of Eq. �5� have been estimated �41�
and include the costs of battery replacement, inverter and genera-
tor. Decision-makers during the target setting process treat CH as a
decision: They must decide on a target budget per truck for pow-
ertrain hybridization.

This relationship has been generated using the Hybrid Electric
Vehicle-Engine-SIMulation �HE-VESIM� �42�, an advanced ve-
hicle simulation model. Using engine displacement, motor size
and battery size as design decisions a Pareto optimum was gener-
ated to quantify the trade-off between fuel economy and hybrid-
ization cost �see Fig. 3�.

Regressing on the values of fuel economy and hybridization
cost we model the relation of fuel economy improvement �from
the conventional baseline design� to hybridization cost:

%�fe = − 0.053 + �4.67 � 10−5�CH − �1.41 � 10−9�CH
2 . �6�

Equation �6� is valid for hybridization costs from $7,590 to
$18,000.

Next, the worth of fuel economy improvement in monetary

Fig. 3 Amount of dollars spent for fuel economy improvement
value is modeled. Translating miles per gallon to dollars allows
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the cost-benefit analysis of commercializing the technology. The
relationship between fuel consumption and dollar value will be
modeled with the assumption that the factors which influence cus-
tomer’s purchasing decision, other than fuel economy, will remain
unchanged. In what follows we model how fuel economy im-
provements affect product demand.

Demand Curve. We draw the relationship between price P and
quantity demanded q of conventional medium class trucks by as-
suming that the demand curve is linear and downward sloping.
Both are standard assumptions in the microeconomic literature.
Using two pairs of price and demand data points �see Table 1�
from the last quarters of 1998 and 1999 of a U.S. publicly traded
truck manufacturer, we estimate the price elasticity of demand to
be equal to 2.269.

We assumed that between these two years there was no major
change in consumer’s income, product quality, product advertis-
ing, product information available to consumers, price and quality
of substitutes and complementary goods, and population �43�. We
also assume that hybrid electric medium class truck falls under the
category of medium class trucks. Therefore, the price elasticity of
demand would remain the same.

The enterprise has decided to allocate 10% of its existing ca-
pacity for the production of the new product. This allocation is
based on a conservative estimation of hybrid electric truck de-
mand penetration using industry knowledge �44�. Adjusting the
quantity to this level of penetration �see Table 1� the demand
curve q=�− ��q /�P�P, solved for P gives the “inverse” demand
curve

P =
�

�q

�P

−
�P

�q
q or

P = 53,545.83 − 31.96q . �7�
Equation �7� represents the demand curve at 1999 with product
quality that of the conventional medium class trucks. Now, the
enterprise is considering an improvement in fuel economy by pro-
ducing and marketing hybrid medium class trucks, translating to
fuel cost savings S for the customers:

S = �Fuel Expense�C − �Fuel Expense�H �8�

where �Fuel Expense�C and �Fuel Expense�H are the present val-
ues of future fuel expenses incurred during the lifecycle of a truck
by the conventional and hybrid design, respectively.

From 1998 to 1999 there was no change in consumer fuel sav-
ings. It is expected that fuel cost savings S will shift the demand
curve Eq. �7� as follows:

q = � −
�q

�P
P +

�q

�S
S �9�

that assumes a linear relationship among quantity q, price P, and
fuel cost savings S.

One could use Eq. �7�, despite changes in consumer fuel sav-
ings by projecting changes from the fuel savings axis �see Fig. 4�
to the two-dimensional demand curve of Eq. �7�. This would ag-
gregate � and ��q /�S�S from Eqs. �7� and �9�. Equation �9� will
be used to decide the level of fuel savings S that must be realized
by the new design. Given that the enterprise is marketing a novel

Table 1 Historical product price and demand data points and
demand values adjusted for expected new product penetration

Year Price Quantity Adjusted quantity

1998 $36,820 5230 523
1999 �$37,510�98

5020 502
technology, a hybrid electric medium truck, Eq. �9� could only be

Journal of Mechanical Design
inferred from Eq. �7� by assuming that ��S /�P�S will shift Eq. �7�.
Solving with respect to price we have

P =
�

�q

�P

−
1

�q

�P

q +

�q

�S

�q

�P

S⇒

P =
�

�q

�P

−
�P

�q
q +

�S

�P
S . �10�

The decision-maker seeks answer to the following question:
What is the optimal fuel savings the new product should have to
maximize profit? The answer is highly dependent on the amount
of price premium �P the customer is willing to pay for one dollar
improvement of fuel savings �S. Given the novelty of the tech-
nology and the potential for fuel economy improvement of the
specific technology, the ratio �S is unknown. Marketing informa-
tion is needed to understand consumer behavior towards the new
technology.

Consumer Preferences. It is expected that the consumer will
show aversion towards the new technology. A “net utility thresh-
old” V is used to account for this aspect of consumer behavior
�45�. From private discussions with industry experts we choose to
define the “net utility threshold” for the truck industry as the dif-
ference between fuel savings from a hybrid powertrain and
change in price. That is,

S − �P − P̄98�99� 	 V , �11�

where S is the present value of fuel savings, P is the price of the

hybrid truck design as defined by Eq. �10� P̄98�99 is the average of
1998 and 1999 market prices of the current conventional truck
design, which is set at $37, 165, and V=$10,000. Since we have
not validated the value of V, we will treat this number as a pa-
rameter in the optimization model and perform postoptimality
studies to understand its importance.

A ratio of �P /�S equal to unity means the customer is willing
to pay an additional dollar for each dollar of fuel cost savings.
Equation �11� shows that the customer is willing to accept the risk
of buying a new product only for net gains of $10,000. We will
use Eq. �11� as a marketing constraint and the ratio �P /�S as a
decision variable in Eq. �25�. Next we model the present value of
fuel savings.

Modeling Fuel Savings Under Uncertainty. First we calculate

Fig. 4 The demand curve at different price elasticities of fuel
savings
the fuel expenses during the lifecycle of the truck. We define
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mileage over the lifecycle and forecast diesel fuel prices. The
Environmental Protection Agency definition of lifecycle for a
medium-class truck �46�, see Table 2. The product of diesel fuel
price D, miles traveled M and fuel consumption gives the total
fuel expenses for the truck owner. However, it is common knowl-
edge that diesel fuel price fluctuates across time. Quantification of
this uncertainty follows.

While in the short-run the price of oil is expected to fluctuate
randomly, in the long-run it is expected to revert to the marginal
cost of producing oil �47�. The mean-reverting process will be
used to model future diesel prices:

�Dt = 
�Dt − Dt��t + ��z

�z = ���t

� 	 N�0,1� . �12�

Here 
 is the speed of reversion, D̄ is the “normal” level of D, i.e.,
the level to which D tends to revert, � is the volatility of diesel
fuel price, estimated from historical monthly diesel fuel prices
from March 1994 to November 2002 �48� �Table 3�.

In the next step we use Eq. �12� to generate a random walk for
240 diesel fuel prices, which describes one possible future sce-
nario of monthly fuel prices over the next 20 years. We repeat the
same process 100,000 times taking into account multiple future
scenarios. Multiplying each of the elements of the 100,000 by 240
matrix by the miles traveled and fuel consumption �assumed to
remain constant across the lifecycle� we can estimate the fuel
expenses of the consumer across time. Discounting back with a
static interest rate r across time and averaging across the probabil-
ity space we calculate the present value of future fuel expenses of
the customer to be

�Fuel Expense� =
 �Fuel Consumption� � �Diesel Fuel Price�t

� �Miles Travelled�t � e−rt. �13�
Since

�Fuel Consumption� = 1/�Fuel Economy� ,

we have

�Fuel Expense� =


 DtMte
−rtdt

fe
. �14�

where fe stands for fuel economy. Modeling of a dynamic interest
rate is possible but beyond the scope of this demonstration.

At this point, we recall that the customers of the enterprise

Table 2 Lifecycle mileage of a medium class truck †46‡

Age Miles Age Miles Age Miles

1 36,493 8 19,012 15 10,228
2 33,203 9 17,359 16 9,397
3 30,221 10 15,861 17 8,644
4 27,519 11 14,502 18 7,962
5 25,069 12 13,271 19 7,342
6 22,849 13 12,155 20 6,782
7 20,836 14 11,145

Table 3 Mean-reversion statistical parameters

Reversion speed �
� 0.041

Mean of reversion �Dt� $1.235

Volatility ��� 0.035
8 / Vol. 128, JANUARY 2006
under consideration are freight and small-package ground delivery
services firms. Their total fuel expenses would depend on the
growth of the industry. In the current work we are not modeling
uncertainty due to industry performance. However, one could se-
lect an appropriate discount rate that reflects the risk of the indus-
try as it is observed in the financial markets. A 10-year average of
the “beta,” i.e., of various stock prices of freight and delivery
firms is found to be 0.94. Using the Capital Asset Pricing Model
�49� one could estimate a discount rate that captures the risk of the
industry, and use it for the estimation of Eq. �14�.

Using Eqs. �8� and �14�, fuel savings are expressed as follows,
where Dt is a 100,000 by 240 matrix

S =


 DtMte
−rtdt

feC
−


 DtMte
−rtdt

feH
. �15�

Profit Model. Profit equals revenues R minus costs C. Here we
consider only production and hybridization costs, Cp and CH, re-
spectively. We are not taking into account operational expenses
such as marketing and sales expenditures. Regressing on historical
data of cost of goods sold for the same U.S. publicly traded truck
manufacturer �see Fig. 5� we estimate the cost curve per truck to
be

Cp = 48201 − 42253U + 25560U2, �16�

where U is the utilization of capacity. Note that minimum produc-
tion cost is achievable at 83% utilization rate.

Quantity produced q and utilization of capacity U are linked as
follows:

q = UK . �17�

For an allocated monthly capacity of K=600 available units Eq.
�16� becomes

Cp = c0 − c1q + c2q2

Cp = 48201 − 70.4q + 0.07q2 �18�
The assumption here follows from �50�, namely, the main cost

difference between hybrid and conventional trucks is the electric
component cost. This hybrid component cost is modeled sepa-
rately �i.e., CH, Eq. �5��, and so the enterprise is assumed to main-
tain the same cost structure for the production of new trucks.

Using Eqs. �10�, �15�, and �18�, profit � will be equal to:

� = R − C = Pq − Cpq − CHq = �53,545.83 − 31.96q +
�S

�P
� 1

feC

−
1

D M e−rt q − �48201 − 70.4q + 0.07q2�q − C q . �19�

Fig. 5 A quadratic cost function links production cost with
capacity utilization
H0
� t t � H
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Prior formulating the final �ATS� model of the planning pro-
cess, we will make a first attempt to quantify the impact of engi-
neering information on profitability.

Necessary Conditions of the Top Level Problem. Let us for-
mulate the following optimal production problem for the
enterprise-wide truck design problem,

maximize �

with respect to
q�

subject to q � K . �20�

From Eqs. �10�, �18�, and �19� we have

maximize � = � �

�P
−

1

�P
q +

�S

�P
S�q − �c0 + c1q + C2q2�q − CHq

with respect to
q�

subject to q � K . �21�

Let us now write the Karush-Kuhn-Tucker conditions for Eq. �21�

�

�P
−

2

�P
q +

�S

�P
S − �c0 + 2c1q + 3c2q2� − CH + �1 = 0,

�1�q − K� = 0,

�1 	 0. �22�

Rearranging the terms in the general form of the quadratic equa-
tion ax2+bx+c=0 we have

�− 3c2�q2 + �−
2

�P
− 2c1�q + � �S

�P
S +

�

�P
− c0 − CH� + �1 = 0,

�1�q − K� = 0,

�1 	 0. �23�

When the capacity constraint is active �1�0 and q=K. When the
capacity constraint is inactive �1=0. From the quadratic formula
�−b±�b2−4ac� /2a �i.e., the solution of ax2+bx+c=0� and given
that q is strictly positive we have

q =

2

�P
+ 2c1 +�� 2

�P
+ 2c1�2

+ 12c2� �S

�P
S +

�

�P
− c0 − CH�

− 6c2
.

�24�

The term �S /�PS−CH depends on engineering information due
to Eqs. �5� and �14�. Unless �S /�PS=CH then engineering infor-
mation will drive the solution. Engineering information will be
unimportant in the case where the firm can pass all the hybridiza-
tion cost to the consumer.

Therefore, when the demand for product differentiation, as it is
partly determined by the physical characteristics of the product,
�S /�PS equals the cost CH of supplying differentiation then engi-
neering decisions do not affect enterprise ones �51�. This observa-
tion agrees with the corporate strategy literature where the product
design decision-making process involves matching customer’s de-
mand for differentiation with the firm’s capacity to supply differ-
entiation �52�.

Analytical Target Setting Model. The objective of the enter-
prise is to maximize profit and the decision variables are hybrid-
ization of the truck, units produced, and increase in price for a
dollar improvement in consumer fuel savings �price to savings
ratio�. The enterprise constraint is derived from the aforemen-
tioned marketing information. The mathematical model is thus

posed as follows:

Journal of Mechanical Design
maximize �

with respect to�CH,
�S

�P
,q�

subject to S − �P − P̄98�99� 	 V

q � K . �25�

In the complete model �S /�P, CH are decisions and S response
of the decisions. Although �S /�P is known in the general case
�51� in this case is treated as unknown. However, the constraint of
Eq. �11� addresses this lack of information.

Profit estimation assumes that supply meets demand, and does
not account for market demand uncertainty. One can incorporate
uncertainty in Eq. �7� using historical price and demand panel data
�53�.

Truck Design Study: Bilevel Target Cascading
In this section the ATC formulation is tailored to the bilevel

hierarchy of the present study. Design problems are formulated for
each element at the two levels, as described below.

Vehicle Model. Appropriate vehicle and system analysis mod-
els that take design variables as input and compute responses as
output are necessary to implement the target cascading process. At
the vehicle level, the integrated system was represented using the
HE-VESIM model �42� to predict responses corresponding to
truck targets. The vehicle model contains submodels of the en-
gine, powertrain, and vehicle dynamics. At the system level,
higher fidelity models were used to predict responses of the trans-
mission and suspensions.

The truck is configured as a parallel hybrid with the electric
motor positioned after the transmission, see Fig. 6. The engine is
connected to the torque converter, whose output shaft is then
coupled to the transmission. The coupling at the transmission out-
put side engages or disengages the electric motor depending on

Fig. 6 Schematic of the integrated vehicle system
the operation mode of the hybrid. Hence, the transmission and/or
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electric motor can be linked to the propeller shaft, differential and
two driveshafts, coupling the differential with the driven wheels.
The model was implemented in MATLAB/SIMULINK �54�.

The local design variables x� in the vehicle problem are engine
displacement, compression ratio, maximum intake pressure,
wastegate speed, electric motor scaling, and battery size. The sys-
tem responses Rs are front and rear suspension compliance and
damping, and four transmission gear ratios. Recalling Eq. �2� we
set �s1 ,s2 ,s3� to correspond to �fsusp,rsusp, tra�, i.e., system re-
sponses for front suspension R fsusp, rear suspension Rrsusp, and
transmission Rtra. Suspension and transmission responses are
compliance and damping, and gear ratios, respectively. Lower and
upper bounds for the optimization variables are set at ±20–33%
of the baseline values depending on the variable. The sequential
quadratic programming �SQP� algorithm of the MATLAB Opti-
mization Toolbox �55� was used as an optimizer.

The driving cycle used to evaluate the fuel economy is a com-
bination of EPA federal urban and highway cycles measured in
miles per gallon and computed by dividing the traveled distance
by the consumed fuel after completion of the driving cycle. This
fuel economy calculation is averaged by simulating initial high
and low energy states of charge for the hybrid propulsion.

System Models. The three elements at the system level include
the transmission, front suspension, and rear suspension. Within
the target cascading methodology, the system models are typically
of higher fidelity compared to their counterparts within the vehicle
model.

The transmission design model �4� at the system level is a plan-
etary gear transmission that matches the gear ratios determined
using the simplified transmission submodel at the vehicle level.
Design variables are the number of teeth for the input sun, reac-
tion sun, input ring, and reaction ring. Computed responses are the
four gear ratios. The suspension design model �4� is a leaf spring
suspension that matches the compliance and damping determined
at the vehicle level. Design variables are the number, thickness,
and width of leaves, and the curvature radius of the top leaf.
Computed responses are compliance and damping of the suspen-
sion system. The local design variables are xtra, x fsusp, and xrsusp.
Note that there are no system linking variables ysi

, i.e., none of the
three system problems share any optimization variables. Due to
the presence of integer variables, the derivative-free optimization
algorithm DIRECT �56� was used for the two suspension and the
transmission problems.

Decision-Making Process Information Flow. The model co-

Fig. 7 Model description, coordination, and information flow
in analytical target setting and analytical target cascading
ordination and information flow is shown in Fig. 7. The objectives
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of each optimization problem are shown in rectangles and the
analysis models are shown in ovals. The octagons depict the de-
cision variables for a specific level of the decision-making hierar-
chy, which are also responses at the immediately lower level.

The ATS problem is solved first. Fuel economy and hybridiza-
tion cost targets T� are then set at the ATC vehicle level problem.
The ATC problem is solved to match these targets with the mini-
mum deviations. For both targets the deviation is defined as fol-
lows:

max�feT − fe,0� + max�CH − CH
T ,0� �26�

i.e., the deviation is nonzero when the targets are underachieved,
otherwise, it is zero. In the enterprise context, Eq. �26� reflects the
preference for overachievement when the targets are set for the
ATC problem. Based on system level designs, the vehicle-level
problem is solved again to complete one iteration of the target
cascading process �the inner coordination block in Fig. 1�. The
updated system response values for front/rear suspension compli-
ance and damping and transmission gear ratios are passed up to
the vehicle level as constraint targets. If the matching of responses
is not satisfactory the whole process is repeated in an iterative
manner until convergence within some tolerance is achieved.

Global convergence properties of the analytical target cascading
formulation, are discussed in �57�. One of the convergent solution
sequences in �57� is implemented to solve the ATC problem here
�Fig. 7�. Once the ATC process is converged, vehicle response
values fe* and CH

* are set as parameters to the reduced analytical
target setting process problem, see Fig. 1. Equation �25� is then
reformulated as follows:

maximize �

with respect to � �S

�P
,q�

subject to S − �P − P̄98�99� 	 10000

q � 600. �27�
The solution of Eq. �27� determines the optimal output and in-
crease in price per dollar of fuel savings.

Results
Results are shown in Table 4. The original ATS model Eq. �25�

is solved first. The resulting targets are a hybridization cost budget

Table 4 Summary of results „decisions indicated by boldface…

Original
ATS

�Eq. �25��

Reduced
ATS

�Eq. �27�� Change

� $1,572,593 $1,956,997 $384,404
%�fe 26.0% 27.5% 1.5%

�S

�P

41.3% 45.7% 4.4%

S $15,929 $16,634 $705

�S

�P
S

$6,578 $7,609 $1,031

q 533 543 10
P $43,094 $43,799 $705
U 88.8% 90.5% 1.7%
Cp

$30,837 $30,896 $59
CH

$9,306 $9,298 −$8
of $9,306 and fuel economy improvement of 26.0%. Using finite
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differences at the optimum of Eq. �25� the sensitivity of profit
with respect to changes in fuel economy were found to be 8.5%
and −1.9%, respectively. This stresses the importance of technical
decisions to profitability.

Preference to overachievement of targets is allowable and mod-
eled using Eq. �26� at the vehicle level of ATC, which is solved
next. The ATC solution essentially matches the hybridization cost
and overachieves fuel economy improvement by 1.5% from the
top-level target. The reduced ATS problem, Eq. �27�, is solved
next, resulting in an increased price to savings ratio �S /�P, in-
creased production volume q, and a 24% increase in profits � as
detailed in Table 4. Recall that the reduced ATS problem Eq. �27�
uses the ATC solution values as parameters.

At the vehicle level of ATC the final design is as follows: Dis-
placement 9.5 L, compression ratio 22, maximum intake pressure
2.17 atm, wastegate speed 1420 rpm, base motor scaled down
25%, and 38 battery modules. The final design of the transmission
has 56 and 45 teeth on the input and reaction rings, respectively,
and 18 and 40 teeth on the input and reaction of the sun gears.
This planetary system results in gear ratios of 6.87, 2.79, 1.48,
1.12. The front suspension system level has a final design with 11
leaf springs, 8.9 mm thickness, 0.58 m radius and 47 mm width
for each leaf. This leads to compliance of 2.136�10−6 m/N and
damping of 16405 N s/m. The rear suspension system final de-
sign, considered the same for both rear axles, has 15 leaf springs,
a thickness of 10.2 mm, a radius of 1.17 m, and width of
40.4 mm. This leads to compliance of 1.804�10−6 m/N and
damping of 15033 N s/m.

Discussion
Assumptions in the current case study fall under three catego-

ries: customer-, macroeconomic- and microeconomic-related. Key
customer-related assumption was his/her preference towards the
new technology and was modeled with the net utility threshold V,
set at $10,000. Key macroeconomic assumption was the use of the
mean-reverting process to simulate future market oil prices. Fi-
nally, key microeconomic assumption was the strategic decision
of the firm to allocate 10% of its capacity mix.

First we performed a parametric study for the net utility thresh-
old to fully understand its importance. A parametric study ex-
plored the effect of this parameter value on the original ATS de-
cisions �without further exploration of possible influence on ATC
results�. The original ATS problem �Eq. �25�� was solved for con-
sumer thresholds between $8,000 and $15,000. The price to sav-
ings ratio decreased in response to increased reluctance to pay for
the new technology, see Fig. 8. Profitability per truck decreases as
the consumer threshold increased due to significant decrease in

Fig. 8 Postoptimality analysis on consumer savings for the
new technology
the price to savings ratio from 58% to 0%, because the enterprise
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is unable to reap the benefits of commercializing the new technol-
ogy. Increased reluctance leads to a decline in enterprise produc-
tion. The study captured the relationship of consumer and enter-
prise preferences. The decision-maker can use the price to savings
ratio to determine the marketing investment required to increase
the likelihood of commercialization success of the new technol-
ogy. At a utility threshold of $12,000 the price to savings ratio was
24% and the profit per truck was $1,000 �see Fig. 8�. The profit
per truck increased to $3,000 at a utility threshold of $10,000 with
the price to savings ratio of 41%. This indicates that a combina-
tion of technology and marketing innovation is needed for a suc-
cessful commercialization. A marketing campaign that increases
technology awareness could decrease the aversion of the con-
sumer towards the new technology and thus increase profitability.
From the current example, reducing the reluctance of the con-
sumer from $12,000 to $10,000 increased profit per truck three-
fold.

For the fuel price mean-reverting process it is important to up-
date the price frequently to reflect current market conditions. As
any other Markov process, current conditions will affect future
random walks. Finally, the hybrid medium truck penetration as-
sumption of 10% that translated to 10% hybrid production capac-
ity allocation did not account for the effect of increasing hybrid
capacity on the current product line of the enterprise. However,
the valuation of a new technology depends heavily on the current
business of the enterprise �i.e., conventional diesel trucks� and
therefore the technology portfolio decision must consider the can-
nibalization effect of switching capacity. In the absence of this
consideration, the enterprise may cannibalize the current product,
potentially decreasing total profit �see Cooper and Papalambros
�58��.

Conclusions
The ATS-ATC linking provides some interesting opportunities.

The truck vehicle example demonstrated the effectiveness of a
particular linking, via treating top targets as parameters. Other
linking strategies are possible, corresponding to actual informa-
tion flow in the enterprise. For example, the ATS problem could
be combined with the top ATC into a single top-level model,
addressing technical and enterprise issues simultaneously. Further-
more, the ATC formulation assumes essentially a weighted Pareto
solution across all target-matching with equal weights. One can
use the sensitivity of product attributes to profit from the ATS
model to assign weights at the top-level ATC model, which reflect
preference towards specific target achievement or overachieve-
ment. In any case, putting the design decisions in an enterprise
context enriches the value and appeal of the engineering decisions
made.
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Nomenclature
�·�L 
 response/linking variable values passed up
�·�U 
 response/linking variable values cascaded

down
�·�C 
 conventional vehicle design
�·�H 
 hybrid vehicle design

c 
 cost coefficients
C 
 cost

CH 
 powertrain hybridization cost per unit

Cp 
 cost of unit production

JANUARY 2006, Vol. 128 / 11



D 
 diesel fuel price

D̄ 
 “normal” level of diesel fuel price
fe 
 fuel economy
ge 
 vector of enterprise inequality constraints
g� 
 vector of vehicle inequality constraints
h� 
 vector of vehicle equality constraints
K 
 units of capacity per month
M 
 truck mileage
P 
 product price
q 
 quantity produced per month
R 
 revenues per month
r� 
 vehicle analysis model
rsi 
 system analysis model for the ith system
R 
 vector of responses

R� 
 vector of vehicle level responses
R�

* 
 vector of “best” feasible responses
Rsi 
 vector of system responses for the ith system

s 
 system
S 
 fuel cost savings

T� 
 vector of targets
U 
 manufacturing capacity utilization
V 
 utility threshold
xe 
 vector of local enterprise variables
x̄� 
 vector of vehicle optimization variables
x̄si 
 vector of ith system optimization variables
x 
 vector of local design variables
y 
 vector of linking design variables

 
 speed of reversion
� 
 volatility of diesel fuel price

�t 
 monthly period
��

R 
 tolerance variable for system responses
��

y 
 tolerance variable for system linking design
variables

� 
 slope of the demand curve
�S /�P 
 price to savings ratio
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