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Abstract We consider a setting of a two settlement power market where firms com-
pete in the forward market and an uncertain real-time market. A recourse-based
framework is proposed where firms make simultaneous bids in the forward market
and take recourse in the real-time market contingent on the realization of uncertainty.
The market participants include both generation firms as well as the independent
system operator (ISO), the latter of which is assumed to maximize wheeling rev-
enue. The resulting stochastic game-theoretic problem is seen to be a Nash game
with coupled strategy sets, often referred to as a generalized Nash game. In general,
the primal variational conditions of such problems are given by quasi-variational in-
equality. Yet, the associated complementarity problem in a primal-dual space admits
a monotonicity property that allows us to derive an appropriate existence statement.
Computation of equilibria is complicated by the challenge arising from the size of
the sample-space. We present a distributed iterative regularization technique that is
shown to scale well with the size of the sample-space. Finally, the paper concludes
with the application of this model on an electrical network and provides insights on
market design and operation.

1 Introduction

With increasing concerns of pollution and environmental impacts from fossil fuels,
attention has shifted towards renewable sources of energy. Particularly, as the pen-
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etration of windpower is growing, this raises questions on the associated impact on
system reliability, capacity shortfall and consumer welfare in power markets. With
growing uncertainty in the generation mix, strategic behavior in power markets can
no longer be addressed from a deterministic standpoint and networked stochastic
counterparts need to be analyzed. However such models necessarily lead to large-
scale problems that are less easy to both analyze and solve.

Game-theoretic formulations have so far proved to be extraordinarily useful tools
for analyzing strategic behavior in power markets. Game theory [10, 24] has its roots
in the work by von Neumann and Morgenstern [29] while the Nash equilibrium solu-
tion concept was forwarded by Nash in 1950 [23]. Pricing of power is a consequence
of a series of clearings or settlements. A single settlement structure refers to one
where firms bid in the real time market at an endogeneously defined price [11, 12,
22]. A two settlement structure is characterized by firms bidding successively in the
forward or day ahead market and the real time or spot market [3, 13, 14, 30]. In this
setting, firms are paid at the forward price for their forward bids (promised genera-
tion levels) while deviations in the real time market are compensated at the real time
price. These games may be analyzed under different levels of rationality. A fully ra-
tional model would yield a game where agents compete in the first period market
subject to spot market equilibrium. This leads to a challenging class of problems,
namely a class of multi-leader multi-follower games. This class of games lead equi-
librium program with equilibrium constraints or EPECs. In such games, each agent
solves an mathematical program with equilibrium constraints (MPEC) [28, 30, 31].
A bounded rationality framework leads to a game where forward and spot decisions
are made simultaneously, leading to variational or complementarity formulations [12,
18, 22], thereby leading to more tractable problems. Lastly models may also be spec-
ified by the ISO’s objective which may be maximization of social welfare [18, 30,
31] or maximization of wheeling or transmission revenue [11, 22]. A more expansive
description of energy models can be found in [2, 15, 26, 27].

The present work extends the deterministic single-settlement framework, proposed
in [12, 22], to a boundedly rational two-settlement stochastic regime. In this paper we
assume that the ISO maximizes wheeling revenue and we allow for a particular gen-
erator to sell power at multiple nodes. This model leads to a Nash game in which
agents have coupled constraints which are not common or shared [9]. This comes
under a broad and challenging realm of problems, referred to as generalized Nash
games [6, 7]. Notably, when these coupled constraints are “shared” in nature, then
a solution to an appropriately defined variational inequality gives equilibria of the
original shared-constraint game. Here, the equilibrium conditions in the primal space
are given by a less tractable quasi-variational inequality. Instead, we opt for analyz-
ing equilibria in the large space of primal and dual variables via a complementarity
approach. Surprisingly, under relatively mild conditions, this complementarity prob-
lem can be characterized as monotone and is seen to admit solutions. Furthermore,
the monotonicity property allows for the construction of distributed regularization
techniques. The key contributions of this paper can be viewed as twofold

1. We present a model for capturing strategic behavior in power markets in an uncer-
tain and boundedly rational setting. The model leads to a Nash game with coupled
strategy sets that is shown to lead to a complementarity problem that is monotone,
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under some conditions. Existence of an equilibrium can be concluded by some
additional analysis.

2. Direct solutions of the complementarity problem get increasingly difficult as the
sample space grows. Naturally, we consider the development of a decomposition
approach that aims to alleviate the challenge arising from problem size. This is
achieved through a distributed iterative regularization gradient-based technique.
Through numerical tests, this scheme is seen to display the required convergence
properties and is observed to scale well with the size of the sample space.

The remainder of the paper is organized into five sections. Section 2 introduces the
stochastic two-settlement electricity market model with market clearing conditions.
In Sect. 3, we analyze the properties of equilibria arising in such games by examining
the properties of the complementarity formulation. A distributed scheme for comput-
ing equilibria for this class of problems is derived in Sect. 4. In Sect. 5, we obtain
insights through a two-settlement networked electricity market model. We conclude
in Sect. 6.

2 Model

A variety of settings have dealt with game-theoretic power market problems. A com-
mon deterministic setting is one where firms compete in just a spot market or a sin-
gle settlement market. However, most power markets are characterized by a multi-
settlement framework that naturally requires the incorporation of uncertainty. A two-
settlement variant is one where firms bid quantities in the forward market and allow
for deviations from these bids in the real time market. Two settlement models differ
with regard to the assumptions on rationality. For instance, under complete rationality,
firms compete in the forward market, subject to spot market equilibrium. Effectively
the problem solved is an equilibrium program with equilibrium constraints (EPEC),
where each firm solves a mathematical program with equilibrium constraints (MPEC)
[21]. Under the setting of bounded rationality, firms are assumed to simultaneously
take decisions in the spot and forward markets. This leads to variational and comple-
mentarity formulations.

In this paper, we consider a bounded rationality framework under a Nash-Cournot
setting and extend the realm of the single-settlement model in [12, 22] to a two settle-
ment setting. We consider a network where nodes and transmission lines are denoted
by i ∈ N and l ∈ L, respectively. (See Table 1 for a list of variables and parameters.)
Firm j ∈ J bids xij at node i in the forward market and is paid at a common forward
price p0

i . The spot sales and generation are denoted by sω
ij and yω

ij respectively and the
associated nodal spot price may be denoted by pω

i . Positive and negative deviations
are settled at the respective spot prices pω

i . This immediately raises a question of ar-
bitrage. A no-arbitrage assumption specifies that the forward price equals expected
spot price or

p0
i = Epω

i .

In practice, arbitrage opportunities exist in power markets and the forward market
is cleared independently. In [16], Kamat and Oren refer to this setting as a market-
clearing model and allow for an independent prescription of forward and spot prices,
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Table 1 Variables and parameters

xij Forward sales decision from firm j at node i

sω
ij

Spot sales decision from firm j at node i during scenario ω

uω
ij

, vω
ij

Positive and negative deviations respectively at scenario ω from firm j at node i

yω
ij

, capω
ij

Total spot generation decisions and capacity at scenario ω for firm j at node i

rω
i

Import/export at scenario ω at node i

�,n,ρω Sample-space, cardinality of sample-space and probability of scenario ω

pω
i

Price at scenario ω at node i

cω
ij

, dω
ij

Coefficient of linear and quadratic terms in the cost function at scenario ω for firm j at node i

fp,fn Penalty functions for positive and negative deviations

N Total number of nodes in the network

a0
i
, b0

i
Intercept and slope of price-function at node i in the forward market

aω
i

, bω
i

Intercept and slope of price-function at node i at scenario ω

J Total number of firms

Ql,i Power flowing across line l due to unit injection/withdrawal of power at node i

Kω
l

Transmission capacity of line l at scenario ω

Nj , N c
j

Set of all generating nodes and non-generating nodes for firm j respectively

Ji Set of all generating firms at node i

L, N Set of all transmission lines and set of all nodes respectively

G,Gc Set of all generating nodes and load nodes respectively

J Set of all generating firms

defined as

p0
i � a0

i − b0
i

∑

j∈J
xij , and pω

i � aω
i − bω

i

∑

j∈J
sω
ij , (1)

where aω
i , a0

i and bω
i , b0

i denote the respective intercepts and slopes. To reduce the
incentive for purely financial participation and reduce significant changes between
forward and spot participation, most markets introduce an additional layer of de-
viation penalties. This model allows for convex differentiable penalty functions for
positive and negative deviations. In addition, each firm incurs a convex generation
cost at a generation facility. Firms are permitted to transfer power from the actual
generation facilities to other nodes and are charged a transmission fee set by the ISO
and given by wω

i . Imports and exports are charged a fee levied by the ISO. Giving
allowance to the fact that multiple firms operate at several nodes in the network, the
revenue of agent j may be written as

πj �
∑

i∈N

(
π0

ij + Eπω
ij

)
,

where π0
ij �

((
a0
i − b0

i

∑

j∈J
xij

)
− E

((
aω
i − bω

i

∑

j∈F
sω
ij

)))
xij
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and

πω
ij �

(
aω
i − bω

i

∑

j∈J
sω
ij

)
sω
ij

︸ ︷︷ ︸
Spot revenue

−Cω
ij (y

ω
ij )︸ ︷︷ ︸

Costs

− (f ω
ij,p(uω

ij ) + f ω
ij,n(v

ω
ij ))︸ ︷︷ ︸

Deviation penalties

−wω
i (sω

ij − yω
ij )︸ ︷︷ ︸

Wheeling costs

.

The generation costs Cω
ij are, in general, assumed to be quadratic, and unless stated

otherwise, are defined as

Cω
ij (y

ω
ij ) � 1

2
dω
ij (y

ω
ij )

2 + cω
ij y

ω
ij . (2)

The generation levels of every firm are bounded by their capacities while the total
system-wide sales across firms is equal to the total quantity of generation for every
firm. The forward and spot sales are related through

sω
ij = xij + uω

ij − vω
ij , ∀i ∈ N ,∀j ∈ J ,∀ω ∈ �.

Then, agent j ’s problem may be compactly represented as follows:

Agj (z−j ) maximize
∑

i∈N

(
E(πω

ij ) + π0
ij

)

subject to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yω
ij ≤ capω

ij (αω
ij )

sω
ij − xij − uω

ij + vω
ij ≤ 0 (βω

ij )

−sω
ij + xij + uω

ij − vω
ij ≤ 0 (γ ω

ij )
∑

i∈N yω
ij − ∑

i∈N sω
ij ≤ 0 (δω

j )
∑

i∈N sω
ij − ∑

i∈N yω
ij ≤ 0 (φω

j )

xij , s
ω
ij , y

ω
ij , u

ω
ij , v

ω
ij ≥ 0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

∀i ∈ N , ∀l ∈ L, ∀ω ∈ �

where z−j � (zi)i �=j denotes the tuple of adversarial decisions. Note that the set of
equality constraints with respect to s, u, v and x are written as two sets of inequality
constraints. Similarly the equality constraints with regard to s and y are written as two
sets of inequality constraints. This allows for the formulation of a pure complementar-
ity problem. Note that α,β, γ, δ and φ represent Lagrange multipliers corresponding
to the appropriate constraints.

In a majority of power markets, there exists an ISO that manages the dispatch,
pricing and other market level tasks. In several settings, the ISO maximizes social
welfare [30, 31]. In this regime, we allow for the ISO to maximize transmission or
wheeling charges [12, 22]. Its worth remarking as to why this objective would be an
appropriate one for an ISO, in contrast with a social welfare maximizing metric. It has
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been noted in [22] that such a model is “equivalent to a competitive market for trans-
mission capacity.” Naturally, this model prescribes the ISO has a profit-maximizing
agent responsible for allocating transmission services, a clear departure from our ear-
lier model.

Power distribution factors, or more specifically the Injection Shift Factors (ISF),
may be used to quantify the power flowing across lines in a network. Let Q de-
note the power distribution factor matrix. Then the power flowing in transmission
line l, due to unit injection or withdrawal of power at node i may be denoted by Ql,i .
The power distribution factor (ISF) is independent of uncertainty and is purely de-
pendent on the network and the choice of the slack node. The details regarding the
computation is presented in [20].1 The ISO’s problem may hence be defined as fol-
lows:

AgJ+1(z−(J+1)) maximize
∑

i∈N
E(wω

i rω
i )

subject to rω
i = ∑

j∈J (sω
ij − yω

ij )
∑

i∈N Ql,ir
ω
i ≤ Kω

l (μω
l )

−∑
i∈N Ql,ir

ω
i ≤ Kω

l (ηω
l ).

Note that ri refers to the inflow or outflow corresponding to node i. The strategy
set of the ISO consists o the decision variables of the generating firms. However the
firms’ constraints are independent of the ISO’s decisions. This leads to a general-
ized Nash game with coupled constraints. In general, the equilibria of such games
[6, 9] leads to a quasi-variational inequality [8]. Formally the game may be defined
as follows:

Definition 1 (Generalized Nash game (G )) The generalized Nash game is given by
a collection of J + 1 agents (J generation firms and the ISO) and denoted by G .
Furthermore, an equilibrium of this game is given by a tuple {z∗

1, . . . , z
∗
J+1} where z∗

j

solves the problem Agj (z∗−j ) for all j = 1, . . . , J + 1 (note that k = J + 1 regarding
the ISO) or

z∗
j ∈ SOL(Agj (z∗−j )), for j = 1, . . . , J + 1.

The analysis of these problems is the focus of the next section.

3 Analysis

In this section, we analyze the generalized Nash game presented in the earlier section.
The following assumptions are employed through the remainder of this paper.

1A slack node may be one, where injection or withdrawal of power is assumed to have no impact on any
line in the network.
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Assumption 1

(A1) The cost of generation Cω
ij is an increasing convex function of yω

ij for all i ∈ N ,
j ∈ J and for all ω ∈ �.

(A2) The nodal forward and spot-market prices are defined by affine price functions
(1) for all i ∈ N and for all ω ∈ �.

(A3) The slopes, b0
i , b

ω
i ≥ 0,∀i ∈ N ,∀ω ∈ �. Moreover, the forward slopes for all

i ∈ N are defined such that, b0
i ≥ 1

4Ebω
i .

(A4) The deviation penalty functions fij,p and fij,n are convex increasing functions
of uω

ij and vω
ij for all i ∈ N , j ∈ J and ω ∈ �.

Unfortunately, the presence of independent forward prices leads to a bilinear term
in the agent objectives. However, under a suitable assumption, the convexity of this
problem can be claimed.

Lemma 1 Suppose assumptions (A1)–(A4) hold. Then the objective functions of the
generation firms are convex.

Proof With convex generation costs and linear wheeling charges it suffices to
prove the convexity of the expectation term of every agent’s objective, given by
ηij (xij , yij ;yi,−j ), defined as

ηij (xij , sij ;xi,−j , si,−j ) = −
(

a0
i − b0

i

∑

j∈J
xij

)
xij

−
∑

ω∈�

ρω

(
aω
i − bω

i

(∑

j∈J
sω
ij

))
(sω

ij − xij ).

The gradient and Hessian of this function are given by

∇ηij =

⎛

⎜⎜⎜⎜⎜⎝

b0
i xij + b0

i

∑
j∈J xij − a0

i + ∑
ω∈� ρωaω

i − ∑
ω∈� ρωbω

i (
∑

j∈J sω
ij )

ρω(−a1
i + b1

i (s
1
ij + ∑

j∈J s1
ij ) − b1

i xij )

...

ρn(−an
i + bn

i (sn
ij + ∑

j∈J sn
ij ) − bn

i xij )

⎞

⎟⎟⎟⎟⎟⎠
,

and

∇2ηij =

⎛

⎜⎜⎜⎜⎝

b0
i −ρ1b1

i . . . −ρnbn
i

−ρ1b1
i 2ρ1b1

i . . . 0
...

...
. . .

...

−ρnbn
i 0 . . . 2ρnbn

i

⎞

⎟⎟⎟⎟⎠
,

respectively.
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Let m be an arbitrary nonzero vector. Then by adding and subtracting terms, we
have

mT ∇2ηijm = 2b0
i m

2
1 − 2m1

n∑

ω=1

ρωbω
i mω+1 + 2

n∑

ω=1

ρωbω
i m2

ω+1

=
(

2b0
i −

n∑

ω=1

ρω bω
i

2

)
m2

1 +
n∑

ω=1

ρω bω
i

2
m2

1

− 2m1

n∑

ω=1

ρωbω
i mω+1 + 2

n∑

ω=1

ρωbω
i m2

ω+1

=
(

2b0
i −

n∑

ω=1

ρω bω
i

2

)
m2

1 +
n∑

ω=1

ρωbω
i

(
m1√

2
− √

2mω+1

)2

.

By assumption Ebω
i ≤ 4b0

i for all i. This implies that mT ∇2ηijm ≥ 0 for all nonzero
m and ηij (xij , sij ; si,−j ) is a convex function in xij and sij for all fixed xi,−j and
si,−j . The convexity of the agent objectives follow. �

The convexity of the agent problems implies that the aggregated first-order Karush-
Kuhn-Tucker (KKT) conditions are necessary and sufficient. Furthermore, this ag-
gregated system may be analyzed for purposes of deriving existence statements. We
assume that the penalty functions for deviations are quadratic. Then the aggregated
KKT conditions are given by the following complementarity problem for all i, j,ω:

0 ≤ xij ⊥
∑

j∈J
b0
i xij + b0

i xij − a0
i +

∑

ω∈�

ρω

(
aω
i − bω

i

∑

j∈J
sω
ij

)

−
∑

ω∈�

βω
ij +

∑

ω∈�

γ ω
ij ≥ 0

0 ≤ sω
ij ⊥ ρω

(
bω
i

∑

j∈J
sω
ij + bω

i sω
ij − bω

i xij − aω
i

)
+

∑

l∈L
Ql,i(μ

ω
l − ηω

l ) − δω
j + φω

j

+ βω
ij − γ ω

ij ≥ 0

0 ≤ yω
ij ⊥ ρω(dω

ij y
ω
ij + eω

ij ) −
∑

l∈L
Ql,i(μ

ω
l − ηω

l ) + αω
ij + δω

j − φω
j ≥ 0

0 ≤ uω
ij ⊥ ρω

(
eω
ij u

ω
ij + hω

ij

) − βω
ij + γ ω

ij ≥ 0

0 ≤ vω
ij ⊥ ρω

(
oω
ij v

ω
ij + tωij

) + βω
ij − γ ω

ij ≥ 0

0 ≤ αω
ij ⊥ capω

ij − yω
ij ≥ 0

0 ≤ βω
ij ⊥ xij + uω

ij − vω
ij − sω

ij ≥ 0
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0 ≤ γ ω
ij ⊥ −xij − uω

ij + vω
ij + sω

ij ≥ 0

0 ≤ δω
j ⊥

∑

i∈N
sω
ij −

∑

i∈N
yω
ij ≥ 0

0 ≤ φω
j ⊥

∑

i∈N
yω
ij −

∑

i∈N
sω
ij ≥ 0

0 ≤ μω
l ⊥ Kω

l −
∑

i∈N
Ql,i

∑

j∈J
(sω

ij − yω
ij ) ≥ 0

0 ≤ ηω
l ⊥ Kω

l +
∑

i∈N
Ql,i

∑

j∈J
(sω

ij − yω
ij ) ≥ 0.

Note that 0 ≤ x ⊥ y ≥ 0 implies that x, y ≥ 0 and xT y = 0 and wω
i has been elim-

inated from the ISO’s equilibrium conditions. Furthermore, the notation for x, y,u

and v follows that of s.

z =
(

p

d

)
, p =

⎛

⎜⎝
p1
...

pN

⎞

⎟⎠ , pi =

⎛

⎜⎜⎜⎜⎝

xi

si
yi

ui

vi

⎞

⎟⎟⎟⎟⎠
, si =

⎛

⎜⎝
s1
i
...

sn
i

⎞

⎟⎠ ,

sω
i =

⎛

⎜⎝
sω
i1
...

sω
iJ

⎞

⎟⎠ , d =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d1
...

dN

δ

φ

μ

η

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, di =
⎛

⎝
αi

βi

γi

⎞

⎠ , αi =
⎛

⎜⎝
α1

i
...

αn
i

⎞

⎟⎠ ,

αω
i =

⎛

⎜⎝
αω

i1
...

αω
iJ

⎞

⎟⎠ , δ =
⎛

⎜⎝
δ1

...

δn

⎞

⎟⎠ , δω =
⎛

⎜⎝
δω

1
...

δω
J

⎞

⎟⎠ ,

μ =
⎛

⎜⎝
μ1

...

μn

⎞

⎟⎠ , μω =
⎛

⎜⎝
μω

1
...

μω
L

⎞

⎟⎠ .

The resulting problem can be cast as a linear complementarity problem, denoted by
LCP(q,M). Such a problem [5] requires a vector z satisfying 0 ≤ z ⊥ Mz + q ≥ 0
where M is defined as

M �
(

Mp −MT
d

Md 0

)
.
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The matrices Mp and Md are given by

Mp =
⎛

⎜⎝
Mp,1 . . . 0

...
. . .

...

0 . . . Mp,N

⎞

⎟⎠ and Mp,i =
(

M̄p,i 0
0 Ti

)
, where

M̄p,i =

⎛

⎜⎜⎜⎝

N0
i P 1

i . . . P n
i

R1
i N1

i . . . 0
...

...
. . .

...

Rn
i 0 . . . Nn

i

⎞

⎟⎟⎟⎠ and Ti =
⎛

⎝
Ty,i 0 0

0 Tu,i 0
0 0 Tv,i

⎞

⎠ .

It can be seen that the matrix Mp is an asymmetric coefficient matrix corresponding
to the primal constraints and primal variables. The matrix Md refers to the coefficient
matrix corresponding to the dual constraints and primal variables. Furthermore Tu,i ,
Tv,i and Ty,i represent diagonal matrices. If I and e refer to an identity matrix and
a column vector of ones, respectively, then the components of M̄p,i and Ti can be
defined as follows.

Tu,i = diag
(
T 1

u,i . . . T n
u,i

)
, Tv,i = diag

(
T 1

v,i . . . T n
v,i

)
,

Ty,i = diag
(
T 1

y,i . . . T n
y,i

)
, T ω

u,i = diag
(
ρωeω

i1 . . . ρωeω
iJ

)
,

T ω
v,i = diag

(
ρωoω

i1 . . . ρωoω
iJ

)
, Ty,i = diag

(
ρωdω

i1 . . . ρωdω
iJ

)
,

P ω
i = −ρωbω

i eeT , Nω
i = ρωbω

i (I + eeT ), N0
i = b0

i (I + eeT ),

Rω
i = −ρωbω

i I.

Finally, the matrix Md and its associated components are defined as follows.

Md =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

D1 . . . 0
...

. . .
...

0 . . . DN

E1 . . . EN

−E1 . . . −EN

F1 . . . FN

−F1 . . . −FN

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, Di =
⎛

⎝
0 0 −I 0 0
I −I 0 I −I

−I I 0 −I I

⎞

⎠ ,

Ei = (
0 I −I 0 0

)
,

Fi = (
0 −Ki Ki 0 0

)
, Ki =

⎛

⎜⎝
Qi . . . 0
...

. . .
...

0 . . . Qi

⎞

⎟⎠ ,

Qi =
⎛

⎜⎝
Q1,i . . . Q1,i

...
. . .

...

QL,i . . . QL,i

⎞

⎟⎠ .
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Using these definitions, we show that M is a positive semidefinite matrix.

Lemma 2 Suppose (A1)–(A4) hold. Then M is a positive semidefinite matrix.

Proof With assumptions on convexity of costs and deviation penalties, it suffices
to show that M̄p,i is positive semidefinite. Let m be an arbitrary column vector. It
follows that

mT ¯Mp,im =
(

b0
i −

n∑

ω=1

ρωbω
i

4

)
g∑

k=1

m2
k +

(
b0
i −

n∑

ω=1

ρωbω
i

4

)(
g∑

k=1

mk

)2

−
n∑

ω=1

ρωbω
i

g∑

k=1

mkmωg+k

+
n∑

ω=1

ρωbω
i

4

g∑

k=1

m2
k +

n∑

ω=1

ρωbω
i

4

(
g∑

k=1

mk

)2

−
n∑

ω=1

ρωbω
i

g∑

k=1

mk

g∑

k=1

mωg+k

+
n∑

ω=1

ρωbω
i

(
g∑

k=1

m2
ωg+k +

(
g∑

k=1

mωg+k

)2)
.

Combining terms and completing the squares we get the following expression:

mT ¯Mp,im =
(

b0
i −

n∑

ω=1

ρωbω
i

4

)
g∑

k=1

m2
k +

(
b0
i −

n∑

ω=1

ρωbω
i

4

)(
g∑

k=1

mk

)2

+
n∑

ω=1

(
ρωbω

i

g∑

k=1

(mk

2
− mωg+k

)2
)

+
n∑

ω=1

ρωbω
i

(
g∑

k=1

mωg+k −
g∑

k=1

mk

2

)2

≥ 0.

This completes the proof. �

The monotonicity of LCP(q,M) follows. However, existence of a solution to this
LCP can be concluded by noting that M ∈ Q0, a class of matrices for which feasibility
of the LCP is sufficient for solvability [5, Theorem 3.1.2].

Theorem 1 (Existence of Equilibria) Consider the game G and suppose (A1)–(A4)
hold. Then G admits an equilibrium.
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Proof It suffices to show that there exists a nonnegative vector zref ∈ R
N̄+ such that

(Mzref + q) ≥ 0. Before proceeding, we recall that z and q are given by

z =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x

s

y

u

v

α

β

γ

δ

φ

μ

η

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and q =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

qx

qs

qy

qu

qv

qα

qβ

qγ

qδ

qφ

qμ

qη

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

respectively and zβ denotes the set of components of z corresponding to a subvec-
tor β . For instance zx = x and zβ = β . Next we define sref, yref, uref, βref, γ ref, δref,

μref, ηref � 0. Then, it is seen that qp ≥ 0 and (Mzref + q)p ≥ 0 for p =
u,v,α, δ,φ,μ,η. Furthermore, it is seen that qx is negative. Thus setting

xref
ij �

a0
i

b0
i

=⇒ (Mzref + q)x > 0.

However a positive value of x makes (Mzref + q)γ negative. Setting

vref
ij,ω = xref

ij =⇒ (Mzref + q)β, (Mzref + q)γ = 0.

A positive value of x also turns (Mzref + q)s negative. Setting

φref
j,ω � max

i∈N
ρωaω

i + max
i∈N

ρωbω
i

a0
i

b0
i

+ � =⇒ (Mzref + q)s > 0.

A positive value of φ turns (Mzref + q)y negative. Setting

αref
ij,ω � max

i∈N
ρωaω

i + max
i∈N

ρωbω
i

a0
i

b0
i

+ 2� =⇒ (Mzref + q)y > 0,

where � > 0. It is seen that zref satisfies both (Mzref + q)p ≥ 0 and zref
p ≥ 0 for all

p = x, s, y,u, v,α,β, γ, δ,φ, η,μ and is feasible with respect to LCP(q,M). This
completes the proof. �

We conclude this section by observing that the monotonicity of the mapping al-
lows one to claim that a regularized game admits a unique equilibrium in a primal-
dual space.
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Proposition 1 (Uniqueness of Equilibria) Consider the game G and suppose (A1)–
(A4) hold. Suppose Gε pertains to game whose associated complementarity problem
is denoted by LCP(q,M + εI). Then Gε admits a unique equilibrium for every ε > 0.

Proof This follows from noting that M + εI is positive definite and the required
existence and uniqueness result follows immediately from Theorem 3.1.6 [5]. �

4 Distributed regularization schemes for computing equilibria

A crucial part of this paper pertains to computing equilibria in these regimes. In this
section, we examine how one may develop schemes for computing solutions to com-
plementarity problems, particularly in stochastic regimes. A host of techniques exist
for computing solutions to monotone linear complementarity problems (cf. [5, 8]).
Unfortunately, these methods rely on the solution of systems that can grow to be
massive as � grows in cardinality. Therefore a direct application of these techniques
proves inadvisable and alternate schemes that rely on decomposition must be intro-
duced. Past work by Shanbhag et al. on monotone stochastic LCPs [28] introduced
a matrix-splitting framework for computing solutions. More recently, a distributed
method for monotone variational problems [18] has been suggested. This scheme re-
lies on projections and uses cutting-plane techniques to alleviate the growth in com-
plexity. Both schemes display a linear growth in computational effort as the cardinal-
ity of � grows.

In general, the application of projection-based techniques with constant step-
lengths require that the mappings be strongly monotone. However, in our regime, the
mapping is merely monotone. This challenge is overcome in [18] through regular-
ization. Specifically, we construct primal-dual and dual constant steplength methods
for regularized problems and provide error bounds to relate the regularized solution
to its original counterpart. However, the goal in that paper was to develop constant
steplength schemes for solving regularized problems where the regularization param-
eter was fixed a priori.

In this paper, we consider an alternate avenue lies in driving the regularization
parameter to zero or by using a proximal-point method. Both techniques are investi-
gated in detail in [17, 33] and are applied here. Here, we pursue a different avenue in
which we update the regularization parameter at every step. Motivated by the above
issues, we present iterative regularization counterparts of the Tikhonov regularization
method and the proximal-point method. These schemes are eponymously termed as
the iterative Tikhonov regularization scheme (ITR) and the iterative proximal point
(IPP) scheme.

Note that LCP(M,q) is equivalent to VI(RN̄+ ,Mz + q) [8]. Furthermore, z∗ is a

solution to the VI(RN̄+ ,Mz + q) if and only if

z∗ = �
R

+
N̄

(z∗ − γF(z∗)), (3)

where F(z) = Mz + q and γ > 0. A regularization to a monotone mapping yields
a strongly monotone mapping. The standard Tikhonov scheme rests on solving a
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sequence of such well-posed regularized problems where the regularized map is given
by Fk(z) � F(z) + εkz. Accordingly, the iterates are defined by

zk = �
R

+
N̄

(
zk − γ (F (zk) + εkzk)

)
k ≥ 1.

Furthermore, if limk→∞ εk = 0, then we have that limk→∞ zk = z∗, as shown in [8,
Chap. 12]. An alternative lies in the proximal-point framework in which the regular-
ized subproblems have a different structure. Specifically, strong monotonicity in this
framework is maintained by using a map Fk(z) � F(z) + εk(z − zk) where zk is re-
ferred to as the centering parameter. Accordingly, the regularized fixed-point problem
is given by

zk = �RN̄
+

(
zk − γF(zk) + θ(zk − zk−1)

)
,

and the iterate zk is a solution of VI(K,F k)). Convergence theory for both regular-
ization schemes, when applied to monotone variational inequalities, can be found in
[1, 8].

In this paper, we consider iterative regularization counterparts of Tikhonov and
proximal-point schemes. Here, the regularization parameter (in the case of Tikhonov)
and the centering parameter (in the case of proximal-point) are updated at every it-
erate, rather than when a fixed point is available. Such iterative regularization tech-
niques have a long history in optimization (cf. [25]) yet have been less used in the
solution of variational inequalities, barring work by Konnov [19]. In recent work
[17, 33], we have examined the convergence of properties of iterative Tikhonov and
proximal-point schemes in the context of monotone Nash games. In the next two sub-
sections, we briefly state and describe each of these schemes. Finally, a discussion of
how these schemes scale with |�| is provided.

4.1 Iterative Tikhonov regularization scheme

The original Tikhonov scheme is a two-timescale scheme that rests on solving a
strongly monotone variational inequality, at every step. In general, this may be a com-
putationally challenging requirement. We alleviate this problem by requiring that a

Algorithm 1: Iterative Tikhonov Regularization Scheme
0 initialization k = 0;

choose constants ψ,�,ε0, γ0 > 0, z0 ≥ 0 and α ∈ (0.5,1), β ∈ (0,0.5);
while ‖F̄ nat (zk,F k)‖ > � do

zk+1 = �
R

N̄+

(
zk − γk(F (zk) + εkz

k)
)
;1

Update regularization εk+1 := ε0
(k+1)β

;2

Update step size γk+1 := γ0
(k+1)α

;3

Compute ‖F̄ nat (zk,F k)‖ := ∥∥zk − �Z

(
zk − ψ(F(zk))

)∥∥;4

k := k + 1;5

end
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single projection step be taken along with an update of the regularization parame-
ter. Formally, the algorithm is stated as follows: Note that the value of ψ is taken
to be 1 in general and � denotes the stopping criterion. If � = 0, it implies that the
solution is a fixed point of the problem. The following theorem from [32] and [17]
specifies the requirements on the step size and the regularization parameter to obtain
a convergent solution.

Theorem 2 (Convergence of ITR scheme) Consider the VI(Z,F). Let the step
sizes be defined such that

∑∞
k=1 γk = ∞ and

∑∞
k=1 γ 2

k < ∞. In addition, let∑∞
k=1 εkγk = ∞. Further let εk → 0 and

lim
k→∞

γk

εk

= 0.

Let F be monotone on Z that is convex. In addition, let F be Lipschitz continuous
with constant L. Then, zk converges to z∗, where z∗ is given by the fixed point relation
in (3).

Proof See appendix. �

Its not immediately obvious that there are indeed acceptable steplength and regu-
larization sequences. The next lemma from [33] demonstrates this is indeed the case.

Lemma 3 (Acceptable steplength sequences) Consider the choice of step sizes and
regularizations of the form γk = γ0

kα and εk = ε0
kβ . Let 0.5 < α < 1 and 0 < β < 0.5.

Then the parameters satisfy the requirements stated in Theorem 2.

4.2 Iterative proximal scheme

Next, we present a single timescale version of the proximal point method. Just as in
the ITR scheme, each iterate is given by a projection step, defined formally as

zk+1 = �
R

+
N̄

(
zk − γk(F (zk) + θ(zk − zk−1))

)
, k ≥ 0.

Algorithm 2: Iterative Proximal Point (IPP) Algorithm
0 initialization k = 0;

choose constants ψ,�,θ, γ0 > 0, z0 ≥ 0 and α ∈ (0.5,1);
while ‖F̄ nat (zk,F k)‖ > � do

zk+1 = �Z

(
zk − γk(F (zk) + θ(zk − zk−1))

)
;1

Update step size γk+1 := γ0
(k+1)α

;2

Compute ‖F̄ nat (zk,F k)‖ = ∥∥zk − �Z

(
zk − ψ(F(zk) + θ(zk − zk−1))

)∥∥;3

k := k + 1;4

end
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The convergence of the scheme for diminishing steplengths has been proved in [17]
and the formal result is stated as follows:

Theorem 3 (Convergence of IPP Scheme) Let the mapping F be strictly monotone
on Z that is convex. In addition, let F be Lipschitz continuous with constant L and
let Z be closed and compact. Suppose γk satisfies

∞∑

k=1

γk = ∞ and
∞∑

k=1

γ 2
k < ∞.

Let θ > 0 be a fixed parameter. Then zk → z∗, where z∗ refers to a solution to the
VI(Z,F ).

Proof See appendix. �

Note that in a complementarity regime where F is merely monotone and Z is merely
closed, the IPP scheme need not converge. In practice, however, we observe that it
performs well on the class of problems of interest.

Remark Projection over sets that may be characterized by a large number of con-
straints, as is common in stochastic regimes, has been dealt with in the past through
a variety of decomposition schemes such as cutting plane methods [4]. However, an
advantage of the current setting is that the projection problems are over the nonnega-
tive orthant and are therefore fairly cheap and parallelizable operations. However, it
should be noted that with this reduction in complexity comes with a growth in size,
since we now consider a larger problem in the primal-dual space.

4.3 Numerical experiments

This section analyzes the performance of the proposed algorithms. The scalability of
the iterative regularization schemes was tested by applying it to large scale stochastic
problems where |�| may be large. The iterative Tikhonov and the iterative proximal
schemes were compared for different test cases confined to the network with 12 nodes
and 13 transmission lines. The grid details are shown in Table 2. Node 12 was chosen
to be the slack node. Four generators were assumed to compete in the market, the
details of which are mentioned in Table 3. The spot-price intercepts were taken to
be 700 across all nodes and scenarios while the forward and spot price slopes were
taken to be drawn from normal distribution of given by N(1,0.02) across all nodes
and all scenarios. Linear and quadratic deviation penalties were taken to be N(8,0)

and N(8,0) respectively for all generators at all nodes and scenarios. Finally, the
schemes were implemented on Matlab 7.0 on a Linux OS machine with a clockspeed
of 2.39 GHZ and a memory of 16 GB.

Scalability The initial step lengths and regularizations were taken to be, γ 0 = 0.15
and ε0 = 0.25 respectively for all the runs. The order of decrease of step lengths was
taken to be β = 0.5001. The order of decrease of the regularization parameter was
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Table 2 Network details
Line Imp. (Ohm) Cap. (MW)

1–2 11000 400

2–3 8500 480

3–4 8000 440

4–5 7000 440

1–3 9000 480

1–6 10000 520

6–7 6000 360

7–8 8000 400

8–9 6500 340

9–10 9500 380

4–10 8500 420

9–11 8000 460

10–12 7000 500

Table 3 Generator details
Generator type Capacity Linear costs Quadratic costs

1 N(2000,10) N(2,0) N(8,0)

2 N(2000,10) N(2,0) N(8,0)

3 N(650,270) N(2,0) N(8,0)

4 N(730,320) N(2,0) N(8,0)

taken to be α = 0.498. For the first set, we fixed the number of firms to be three
(Firms 1, 2 and 3). For two different values of the forward intercepts (a0), we varied
the number of scenarios from 5 to 60 in steps of 5. It is to be noted that the scheme
is distributed and computation can be done in parallel. However, we proceed to show
that even serial times scale well with the size of the problem. The stopping tolerance
� was taken to be proportional to the problem size.

� = ‖Fnat (z)‖ = ‖z − max (z − F(z),0)‖ ≤ |�|
10

.

Table 4 reports the corresponding serial computation time and final regularization
values for all instances and scenarios.

Comparison between schemes A four firm problem, under the same setting was
taken as a case study to compare the two schemes. The schemes were tested by vary-
ing the number of scenarios from 5 to 60 in steps of 5 for three different instances.
The initial step size was the same (γ0 = 0.15) for both the schemes while θ was
taken to be 10 for the IPP scheme. The stopping criterion was taken to be the same
in both the cases. The results are reported in Table 5. The IPP scheme shows a better
performance terms of the number of iterations.
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Table 4 Scalability with |�|

No. of scenarios Variables Serial time (s) Iterations

a0 = 900 5 1456 123.48 596251

10 2876 139.24 272007

15 4296 181.96 178963

20 5716 195.36 135193

25 7136 248.77 124511

30 8556 379.70 162553

35 9976 576.26 210889

40 11396 875.62 278733

45 12816 1296.48 366574

50 14236 1814.03 443753

55 15656 2331.13 528315

60 17076 3069.52 607701

a0 = 950 5 1456 139.10 665701

10 2876 138.98 300640

15 4296 200.14 197092

20 5716 214.89 148469

25 7136 259.14 130812

30 8556 383.25 164232

35 9976 584.05 212735

40 11396 873.52 279423

45 12816 1307.09 369709

50 14236 1833.24 449557

55 15656 2361.93 538197

60 17076 3122.51 617349

Table 5 Comparison: ITR and IPP schemes

No. of scenarios Iterations

Iterative Tikhonov Iterative Proximal

a0 = 900 10 511402 46273

15 472182 59406

20 1029679 66484

a0 = 950 10 532134 49293

15 481456 61836

20 1032890 71708

5 Insights

Though the above stated schemes perform well with regard to large problems, second-
order solvers prove to be more efficient for smaller scale problems. In this section,
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Table 6 Forward participation and premium—no deviation penalties

Intercepts Node 1 Node 2 Node 3

Total Bids p0
i

− Epω
i

Total Bids p0
i

− Epω
i

Total Bids p0
i

− Epω
i

50 0.00 −183.99 0.00 −183.99 0.00 −183.99

100 0.00 −133.99 0.00 −133.99 0.00 −133.99

150 0.00 −83.99 0.00 −83.99 0.00 −83.99

200 0.00 −33.99 0.00 −33.99 0.00 −33.99

250 12.95 3.21 13.35 3.23 12.77 3.20

300 53.37 13.23 55.03 13.30 52.65 13.19

350 93.80 23.25 96.72 23.37 92.52 23.19

400 134.22 33.27 138.40 33.45 132.40 33.18

450 174.65 43.28 180.09 43.52 172.27 43.18

500 215.08 53.30 221.77 53.60 212.15 53.17

we use KNITRO (v 5.0) as our solver to solve the exact LCP(q,M). This case study
uses the same generator details mentioned in Table 3. The number of scenarios was
taken to be twenty (n = 20). However, in this case, the linear and quadratic costs
were taken to be N(2,0) and N(0.2,0) respectively. Unless stated, the linear and
quadratic deviation penalties (positive and negative) were taken to be N(2,0) and
N(0.2,0) respectively. We focus on two major questions pertaining to two settlement
markets. First, to what extent do forward prices impact participation? Second, what
impact does increasing wind power penetration have on forward participation?

5.1 Forward commitments

We define a term called nodal premium, given by the difference between the forward
price and the expected spot price at that node. The deviation penalties were set to
be zero and the spot intercepts were fixed to be 700. The forward intercepts across
all nodes were varied from 50 to 500 in steps of 50. Table 6 shows the variation
of forward bids with increasing forward intercepts across nodes 1, 2 and 3. Firms
do not bid in the forward market, till a particular level is reached where they find a
positive premium. The same behavior is seen across the other nodes. However with
sufficiently high deviation penalties, the behavior is not the same. Firms bid in the
forward market even when they do not find a premium, in order to decrease losses
due to positive deviation. Results with the above assumed deviation penalties are
reported in Table 7.

5.2 Wind power penetration

Here, we fix the capacity levels of generators 1, 2 and 3 while the capacity of the
wind (fourth) generator is varied from N (30,10) to N (300,90). It is seen that the
forward commitments of the firms tend to increase (Fig. 1). Increased volatility and
reduced spot prices may be attributed to be reasons for this behavior. In addition, it is
seen that the mean premium tends to increase.
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Table 7 Forward participation and premium—quadratic deviation penalties

Intercepts Node 1 Node 2 Node 3

Total Bids p0
i

− Epω
i

Total Bids p0
i

− Epω
i

Total Bids p0
i

− Epω
i

50 0.00 −183.97 0.00 −183.93 0.00 −184.01

100 0.00 −133.97 0.00 −133.93 0.00 −134.01

150 0.00 −83.97 0.00 −83.93 0.00 −84.01

200 0.00 −33.97 0.00 −33.93 0.00 −34.01

250 31.36 −14.98 32.32 −14.85 30.95 −15.06

300 70.23 −3.41 72.39 −3.18 69.29 −3.53

350 109.10 8.16 112.46 8.49 107.63 8.00

400 147.97 19.73 152.53 20.15 145.98 19.53

450 186.84 31.30 192.60 31.82 184.32 31.06

500 225.70 42.88 232.67 43.49 222.66 42.59

Fig. 1 Penetration of wind power

5.3 Policy insights

Several insights may be drawn from the standpoint of market design and operations,
particularly in the face of integrating volatile renewables. Most markets introduce
a penalty that is charged on deviations in the real-time market from forward posi-
tions. If these penalties are set at zero, then there is no forward participation unless
the expected spot prices exceed forward prices. If, however, the deviation penalties
are raised to a sufficiently high level, then participants bid even when forward prices
are less than expected spot prices; this ensures that participants can better recuperate
penalties. It remains a goal of future work to study this relationship closer, primar-
ily because deviation penalties represent a potentially useful tool in managing risk
associated with shortfalls in real-time markets. A second observation pertains to the
increase in forward participation when the volatility and penetration increases. With
the growth in wind capacity, this appears to be a natural consequence. In accordance
with a growth in the mean capacity, we notice that forward participation also in-
creases. This is partly a consequence of the need to sell cheap power without paying
significant deviation costs.
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6 Summary

A two settlement structure with uncertainty is considered where agents compete in
the forward and spot markets. Under an assumption of bounded rationality, agents
make bids in the forward market and provide a simultaneous recourse-based bid in the
real-time market. Furthermore, the ISO is assumed to maximize wheeling revenue.
The resulting Nash game is seen to have coupled strategy sets and belongs to a class
of generalized Nash games. The agent objective functions are shown to be convex
and the resulting complementarity formulation proves to be more tractable. In fact,
the mapping of the LCP proves to be monotone, a property that proves useful in
developing an existence result.

However the absence of strong monotonicity rules out the avenue of traditional
projection algorithms. Motivated by this shortcoming, this paper discusses two differ-
ent convergent schemes namely the iterative Tikhonov regularization and the iterative
proximal point algorithms. It is seen from the numerical results that the algorithms
scale very well with the problem size and comparison tests show that the IPP algo-
rithm is more effective.

Lastly, some insights are obtained from the above model by applying it to a 12-
node network. It is also observed that in the absence of exogenous deviation penalties,
firms do not bid in the forward market unless they see an incentive. The same is not
seen to be the case in a setting with deviation penalties. Moreover with increasing
wind penetration it is seen that the market becomes more volatile and the firms bid
more in the forward market. It is also seen that with increasing volatility due to wind
assets, the risk premium tends to increase.

Appendix

The following Lemmas from [25] are employed in developing our convergence the-
ory.

Lemma 4 Let uk+1 ≤ qkuk + αk , 0 ≤ qk < 1, αk ≥ 0 and

∞∑

k=0

(1 − qk) = ∞,
αk

1 − qk

→ 0, k → ∞.

Then limk→∞ uk ≤ 0 and if uk > 0, then limk→∞ uk = 0.

Lemma 5 Let uk+1 ≤ (1 + vk)uk + pk , uk, vk,pk ≥ 0 and

∞∑

k=0

vk < ∞,

∞∑

k=0

pk < ∞, k → ∞.

Then limk→∞ uk = ū ≥ 0.
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Our proof of convergence relies on relating the iterates of the proposed ITR scheme
to that of the original Tikhonov scheme. The following Lemma reproduced from [32]
provides a bound between consecutive iteratives of the standard Tikhonov scheme.

Lemma 6 Let the mapping ∇F be monotone and suppose SOL(Z,F ) be nonempty
and bounded. Consider the standard exact Tikhonov scheme defined by iterates {yk}.
If M := ‖z∗‖2, then

‖yk − yk−1‖ ≤ M(εk−1 − εk)

εk
.

Proof Omitted (see [32]). �

Proof for Theorem 2

For the sake of completeness, the following proof is reproduced from [32] and [17].
The regularization parameter {εk} and the steplength sequence {γk} are assumed to
satisfy the following assumption.

Assumption 2 (A5) The mapping F(x) is Lipschitz continuous with constant L.
The regularization parameter εk and steplength γk satisfy

∑∞
k=1 γ kεk = ∞, εk+1 ≤

εk,∀k, γk+1 ≤ γk∀k, limk→∞ γk/ε
k = 0,

∑∞
k=0 γ 2

k < ∞,
∑∞

k=0(γkε
k)2 < ∞ and

lim
k→∞

εk−1 − εk

γk(εk)2
= 0. (4)

Let yk denote the standard Tikhonov iterate. By the triangle inequality, ‖zk+1 − z∗‖
can be bounded by terms 1 and 2:

‖zk+1 − z∗‖ ≤ ‖zk+1 − yk‖︸ ︷︷ ︸
term 1

+‖yk − z∗‖︸ ︷︷ ︸
term 2

.

Of these, term 2 converges to zero from the convergence statement of Tikhonov reg-
ularization methods. It suffices to show that term 1 converges to zero as k → ∞
which follows as shown next. By using the non-expansivity of the Euclidean projec-
tor, ‖zk+1 − yk‖2 is given by

‖zk+1 − yk‖2 =
∥∥∥�Z

(
zk − γk(F (zk) + εkzk)

)
− �Z

(
yk − γk(F (yk) + εkyk)

)∥∥∥
2

≤
∥∥∥
(
zk − γk(F (zk) + εkzk)

)
−

(
yk − γk(F (yk) + εkyk)

)∥∥∥
2
.

This expression can be further simplified as

‖(1 − γkε
k)(zk − yk) − γk(F (zk) − F(yk))‖2

= (1 − γkε
k)2‖zk − yk‖2 + γ 2

k ‖F(zk) − F(yk)‖2

− 2γk(1 − γkεk)(z
k − yk)T (F (zk) − F(yk))

≤ (1 − 2γkεk + γ 2
k (L2 + ε2

k ))‖zk − yk‖2,
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where the last inequality follows from γkεk ≤ 1 and the monotonicity of F(x) over Z.
If Lemma 4 can indeed be invoked then it follows that ‖zk+1 − yk‖ → 0 as k → ∞.

The remainder of the proof shows that the conditions for employing Lemma 4 do
hold. It can be seen that

‖zk+1 − yk‖ ≤ qk‖zk − yk‖ ≤ qk‖zk − yk−1‖ + qk‖yk − yk−1‖

≤ qk‖zk − yk−1‖ + qkM
(εk−1 − εk)

εk
,

where the second inequality is a consequence of the triangle inequality and the third

inequality follows from Lemma 6. Suppose qk :=
√

(1 − 2γkεk + γ 2
k (L2 + ε2

k ). In-
voking Lemma 4 requires showing that

∞∑

k=0

(1 − qk) = ∞ and lim
k→∞

qk

1 − qk

M
(εk−1 − εk)

εk
= 0.

It is easily seen that

∞∑

k=0

(1 − qk) =
∞∑

k=0

1 − q2
k

1 + qk

=
∞∑

k=0

(
2γkεk − γ 2

k (L2 + ε2
k )

1 + qk

)

>

∞∑

k=0

(2γkεk − γ 2
k (L2 + ε2

k )) = ∞,

where the inequality follows from qk < 1 and the final equality follows from∑∞
k=0 γkε

k = ∞ and the square summability of γkεk and γ k. The second require-
ment follows by observing that

qk

1 − qk

M
(εk−1 − εk)

εk
= qk(1 + qk)

1 − q2
k

M
(εk−1 − εk)

εk

= qk(1 + qk)

2γkεk − γ 2
k (L2 + ε2

k )
M

(εk−1 − εk)

εk

= qk(1 + qk)

2 − γk

εk (L2 + ε2
k )

︸ ︷︷ ︸
Term 1

M
(εk−1 − εk)

γk(εk)2
︸ ︷︷ ︸

Term 2

.

Since γk, ε
k → 0, it follows that qk → 1. Since γk/ε

k → 0, Term 1 tends to 1 as
k → ∞. By assumption (A5), Term 2 tends to zero as k → ∞. The proof for the
existence of such a sequence is not straightforward as stated earlier and is proved
in [32]. �
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Proof for Theorem 3

For the sake of completeness, the following proof is reproduced from [17]. We begin
by expanding ‖zk+1 − z∗‖ and by using the non-expansivity property of projection.

‖zk+1 − z∗‖2 = ‖�Z(zk − γk(F (zk) + θ(zk − zk−1))) − �Z(z∗ − γkF (z∗))‖2

≤ ‖(zk − z∗) − γk(F (zk) − F(z∗)) − γkθ(zk − zk−1)‖2.

Expanding the right hand side,

‖zk+1 − z∗‖2 ≤ ‖zk − z∗‖2 + (γkL)2‖zk − z∗‖2 + (γkθ)2‖zk − zk−1‖2

− 2γk(z
k − z∗)T (F (zk) − F(z∗))

− 2γkθ(zk − zk−1)T
(
zk − z∗ − γk(F (zk) − F(z∗))

)
.

Using Lipschitz and monotonicity properties of F(x), we have

‖zk+1 − z∗‖2 ≤ (1 + γ 2
k L2)‖zk − z∗‖2 + (γkθ)2‖zk − zk−1‖2

−2γkθ(zk − zk−1)T
(
(zk − z∗) − γk(F (zk) − F(z∗))

)

︸ ︷︷ ︸
Term 1

.

Term 1 can bounded from above by the use of the Cauchy-Schwartz inequality, the
boundedness of the iterates, namely ‖zk − z∗‖ ≤ C, and the Lipschitz continuity of
F , as shown next.

‖zk+1 − z∗‖2 ≤ (1 + γ 2
k L2)‖zk − z∗‖2 + (γkθ)2‖zk − zk−1‖2

+ 2γkθ‖zk − zk−1‖
(
‖zk − z∗‖ + γk‖F(zk) − F(z∗)‖

)

≤ (1 + γ 2
k L2)‖zk − z∗‖2 + (γkθ)2‖zk − zk−1‖2

+ 2γkθC‖(zk − zk−1)‖ + 2γ 2
k θLC‖(zk − zk−1)‖.

Next, we derive a bound on ‖zk − zk−1‖ by leveraging the non-expansivity of the
Euclidean projector.

‖zk − zk−1‖ = ‖�Z(zk−1 − γk−1(F (zk−1) + θ(zk−1 − zk−2))) − �Z(zk−1)‖
≤ ‖(zk−1 − γk−1(F (zk−1) + θ(zk−1 − zk−2))) − (zk−1)‖
= ‖ − γk−1(F (zk−1) + θ(zk−1 − zk−2)))‖.

It follows from the boundedness of Z and the continuity of F(z), that there exists a
β > 0 such that ‖F(z)‖ ≤ β for all z ∈ Z, implying that ‖zk −zk−1‖ ≤ γk−1(β +θC).
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The bound on ‖zk − zk−1‖ allows us to derive an upper bound ‖zk+1 − z∗‖2:

‖zk+1 − z∗‖2 ≤ (1 + γ 2
k L2)‖zk − z∗‖2 + (γkθ)2γ 2

k−1(β + θC)2

+ 2γkγk−1θC(1 + γkL)(β + θC)

≤ (1 + γ 2
k L2

︸ ︷︷ ︸
�vk

)‖zk − z∗‖2

+ (γkθ)2γ 2
k (β + θC)2 + 2γ 2

k θC(1 + γkL)(β + θC)︸ ︷︷ ︸
�pk

.

The above sequence can be compactly represented as the recursive sequence uk+1 ≤
(1 + vk)uk + pk, where

∞∑

k=0

vk = L2
∞∑

k=0

γ 2
k < ∞,

∞∑

k=0

pk < ∞,

the latter a consequence of the square summability of γk . It follows from Lemma 5
that uk → ū ≥ 0. It remains to show that ū = 0. Recall that ‖zk+1 − z∗‖2 is bounded
as per the following expression:

‖zk+1 − z∗‖2 ≤ (1 + vk)‖zk − z∗‖2 + pk − 2γk(z
k − z∗)T (F (zk) − F(z∗)).

Suppose ū > 0. It follows that along every subsequence, we have that μk =
(zk −z∗)T (F (zk)−z∗) ≥ μ′ > 0,∀k. This is a consequence of the strict monotonicity
of F whereby if (F (zk) − F(z∗))T (zk − z∗) → 0 if zk → z∗. Since ū > 0, it follows
that ‖zk − z∗‖2 → ū > 0. Then by summing over all k, we obtain

lim
k→∞‖zk+1 − z∗‖2 ≤ ‖z0 − z∗‖2 +

∞∑

k=0

γ 2
k L2‖zk − z∗‖2 − 2

∞∑

k=0

γkμk +
∞∑

k=0

pk.

Since vk and pk are summable and μk ≥ μ′ > 0 for all k, we have that:

lim
k→∞‖zk+1 − z∗‖2 ≤ ‖z0 − z∗‖2 +

∞∑

k=0

γ 2
k L2‖zk − z∗‖2 − 2

∞∑

k=0

γkμk +
∞∑

k=0

pk

≤ ‖z0 − z∗‖2 +
∞∑

k=0

γ 2
k L2‖zk − z∗‖2 − 2μ′

∞∑

k=0

γk

+
∞∑

k=0

pk ≤ −∞,

where the latter follows from observing that
∑∞

k=0 γ 2
k < ∞,

∑∞
k=0 γk = ∞ and

‖zk − z∗‖ ≤ C. But this is a contradiction, implying that along some subsequence,
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we have that μk → 0 and lim infk→∞ ‖zk − z∗‖2 = 0. But we know that {zk}
has a limit point and that the sequence zk converges. Therefore, we have that
limk→∞ zk = z∗. �
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