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ABSTRACT 

Analytical target cascading (ATC) is a methodology for 
hierarchical multilevel system design optimization. In previous 
work, the deterministic ATC formulation was extended to 
account for uncertainties using a probabilistic approach.  
Random quantities were represented by their expected values, 
which were required to match among subproblems to ensure 
design consistency. In this work, the probabilistic formulation 
is augmented to allow introduction and matching of additional 
probabilistic characteristics.  Applying robust design principles, 
a particular probabilistic analytic target cascading (PATC) 
formulation is proposed by matching the first two moments of 
random quantities. Several implementation issues are 
addressed, including representation of probabilistic design 
targets, matching interrelated responses and linking variables 
under uncertainty, and coordination strategies for multilevel 
optimization. Analytical and simulation-based optimal design 
examples are used to illustrate the new PATC formulation. 
Design consistency is achieved by matching the first two 
moments of interrelated responses and linking variables. The 
effectiveness of the approach is demonstrated by comparing 
PATC results to those obtained using a probabilistic all-in-one 
(PAIO) formulation. 
1 
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1  INTRODUCTION 

Optimization of complex systems typically involves a large 
number of design variables and coupled multidisciplinary 
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analyses.  The so-called all-in-one (AIO) approach, in which a 
large-scale optimization problem is formulated and solved with 
fully integrated multidisciplinary analyses (MDA), may not be 
practical as the MDA can be computationally expensive at each 
optimization iteration. It is often desirable to decompose the 
system into a number of subsystems each represented by an 
optimization subproblem. As illustrated in Fig. 1, a system 
decomposition can be hierarchical (Fig.1a) or nonhierarchical 
(Fig. 1b).  
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Figure 1  System decomposition approaches 

Multidisciplinary design optimization (MDO) 
methodologies have been developed to support decomposed, 
distributed optimization in an effort to maintain disciplinary 
autonomy under a decentralized, multidisciplinary design 
environment (Balling and Sobieszczanski-Sobieski, 1996; 
Alexandrov and Lewis, 1999).  Existing MDO techniques (e.g. 
Cramer et al., 1994; Kroo et al., 1994; Braun et al., 1996; Kroo, 
1997; Renaud and Tappeta, 1997) were typically developed for 
nonhierarchically-decomposed systems. Subsystems are 
optimized concurrently, while a system-level coordinator is 
used to take into account subsystem interactions.  

Analytical target cascading (ATC) is a methodology 
developed for hierarchical multilevel system optimization (Kim 
et al., 2000; Kim, 2001; Kim et al., 2001 and 2002; Kokkolaras 
et al., 2002 and 2004b). ATC is intended primarily for 
hierarchies decomposed by objects or physical subsystems 
rather than by aspects or disciplines (Wagner, 1993), as it is 
common in MDO. Each block in the hierarchical structure of 
1 Copyright © 2005 by ASME 



Fig. 1a is referred to as an element or a subproblem, which can 
have only one parent element, but multiple children elements.  
Unlike many existing MDO formulations, the original problem 
is decomposed in multiple levels, while interactions among 
subsystems with the same parent element are considered and 
coordinated at the level above.  ATC operates by pre-specifying 
system design targets at the top level and formulating and 
solving a minimum deviation optimization problem1 for each 
element in the hierarchy.  The system design targets are often 
determined based on enterprise-level decision-making models 
(Cooper et al., 2003; Wassenaar and Chen, 2003). The process 
of cascading system targets to design specifications for 
subsystems at the lower levels of the hierarchy matches the 
current way of meeting design targets within a hierarchical 
organizational structure in industry.    

MDO formulations including ATC were originally 
developed for deterministic design problems. Incorporating 
uncertainty in a MDO formulation is complicated due to the 
interconnections among multiple elements that exchange 
information.  Efforts to extend MDO to account for uncertainty 
have been based on integrating either robust design principles 
(Gu et al., 1998; Chen and Lewis, 1999; Du and Chen 2002; 
Batill et al., 2000; Padmanabhan and Batill, 2000; Gurnani and 
Lewis, 2004) or reliability-based techniques (Sues et al., 2000; 
Chiralaksanakul and Mahadevan, 2004) into MDO 
formulations.  However, most of the research mentioned above 
is developed for nonhierarchical system optimization problems, 
which are formulated as single- or bi-level problems. 

For design optimization of hierarchically decomposed 
multilevel systems under uncertainty, Kokkolaras et al. 
(2004a), extended ATC to a probabilistic formulation by using 
the expected values to represent random quantities 
communicated among elements. The mean values of 
interconnected subproblem responses and linking variables are 
matched, respectively. However, matching the mean values of 
random quantities may be insufficient to ensure design 
consistency2 under uncertainty. 

In the present article, we present a more general 
probabilistic ATC (PATC) formulation that can accommodate 
various representations of uncertainty in the multilevel 
optimization. Several issues related to the implementation of 
the proposed PATC formulation are examined.  First, the 
meaning and representation of design targets under uncertainty 
are addressed. In our implementation, the quality engineering 
principle (Phadke, 1989) is followed to set the targets for 
probabilistic characteristics of engineering attributes throughout 
the hierarchy. Second, the issue of matching probabilistic 
behaviors from interrelated elements to ensure design 
consistency is addressed. It is expected that the degree of 
matching probabilistic characteristics can have a large impact 
on the efficiency of the PATC process and the accuracy of the 
obtained optimal design.  In our implementations, design 
consistency is achieved by matching the first two moments of 
interrelated responses and linking variables.  The effectiveness 
of this treatment is demonstrated in case studies that compare 
the results of a probabilistic all-in-one (PAIO) formulation with 
 

                                                           
1 Minimum deviation optimization problem is an optimization problem with 

the objective to minimize deviations of the achievable performance from the 
assigned targets. 

2 Design consistency means that the subproblem responses and linking 
variables are matched among multiple elements, respectively. 
those from the PATC formulation. Finally, we investigate 
empirically the potential impact of the coordination strategy on 
the convergence of PATC by comparing solutions and 
efficiency of both top-down and bottom-up strategies.   

The organization of the article is as follows. In Section 2 
we briefly review the deterministic ATC formulation and 
present a generalized PATC formulation.  In Section 3 we take 
a close look at issues, such as uncertainty representation, design 
consistency, and coordination strategies. A moment-matching 
PATC formulation is proposed that matches the mean and 
standard deviation of random quantities communicated among 
elements. In Section 4 analytical and simulation-based 
examples are used to demonstrate the effectiveness of the 
proposed formulation. Conclusions and suggestions for future 
work are presented in Section 5. 

2 PROBABLISTIC ANALYTICAL TARGET 
CASCADING FORMULATION 

2.1  Review of the Deterministic Formulation 
When viewing engineering product development as a 

process of meeting targets set by the enterprise level decision-
making models (Kim et al., 2004), the deterministic all-in-one 
(AIO) optimization is formulated as  

( )

Given 
find 
to minimize - ( )

subject to .≤

T
x

T r x

g x 0

               (1) 

The vector x includes all design variables, while the vector 
r represents the system’s responses. The vector T includes the 
target values for r. These target values are fixed during the 
optimization process. The design objective is to find a feasible 
design x that brings the responses r as close as possible to the 
assigned targets T. The quality of a design is measured by the 
deviation between r and T, using some (possibly weighted) 
norm. In this paper, we use the l2-norm to measure deviations, 
but square the norms in the computational implementation of 
the process to avoid derivative discontinuities.  

Using the concept of ATC, the AIO problem in Eq. (1) is 
decomposed hierarchically into elements at multiple levels.  
Coupling among elements is captured by linking variables.  
Linking variables can be design variables shared among 
elements with the same parent or responses from “sibling” 
elements at the same level (Allison, 2004). Each element is a 
subproblem of a smaller size. Inputs to an element include its 
local design variables, responses from its children elements, 
and linking variables from “sibling” elements. The design and 
analysis models at multiple levels are hierarchical by nature as 
the output of a lower level model becomes the input of a higher 
level model. 

The deterministic ATC optimization of element j at level i 
(Oij) with nij children is formulated in Eq. (2). The vector rij 
represents the element’s responses. The optimization variables 
include local design variables xij, linking variables yij, targets 
for children responses r(i+1)k, k=1,…,nij, targets for children 
linking variables y(i+1)j, and tolerance optimization variables εr 
and εy to coordinate children responses and linking variables for 
design consistency. The collective optimization variables will 
from now on be referred to as decision variables. Note that 
2 Copyright © 2005 by ASME 



element Oij collects all linking variables of its children in a 
single vector y(i+1)j.  The kth child of Oij uses a selection matrix 
S(i+1)k, to identify which components of y(i+1)j correspond to the 
linking variables y(i+1)k of that child (Michalek and 
Papalambros, 2005). Similarly, the Oij itself uses its selection 
matrix Sij to identify the target values for its linking variables 
from the vector U

iqy , where q denotes its parent. 

( ) ( )

( ) ( )

( ) ( )

U U L L
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1 1
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In Eq. (2), superscripts U indicate targets assigned by the 
parent element, while superscripts L indicate values passed 
from children elements. The targets for responses and linking 
variables of element Oij are U

ijr  and U
ij iqS y , respectively. Solving 

the problem in Eq. (2), element Oij finds the achievable values 
of its responses and linking variables that are the closest to U

ijr  
and U

ij iqS y , respectively. Oij then passes them back to its parent 
element as L

ijr  and L
ijy , respectively. It also determines the 

optimal values for its children responses and linking variables 
and passes them down as targets, ( )

U
1i k+r  and ( )

U
1i j+y . The actual 

achievable values, ( )
L

1i k+r  and ( )
L

1i k+y , are passed up to Oij from its 
children to maintain consistency. 

2.2 Generalized Probabilistic ATC Formulation 
In a probabilistic design optimization formulation, 

uncertain quantities are random variables that can be 
characterized by a probability density function (PDF), a 
cumulative distribution function (CDF), or descriptors such as 
moments (Ang and Tang, 1975), etc.  We use the superscript ν 
to denote probabilistic characteristics of a random quantity.  
For example, for a normally distributed random variable X, Xν 
=[µX, σX]. Still taking the objective as meeting design targets, 
the probabilistic AIO (PAIO) optimization formulation is 

( )

ν

ν

Given
find

to minimize 

subject to    Pr 0 ,    1,..., ,

with         ( ),

v

v

m mg m Mα

−

≤ ≥ =⎡ ⎤⎣ ⎦
=

T
X

T R

X

R f X

             (3) 

where M is the number of constraints. In Eq. (3), capital letters 
R and X are used to represent the random quantities of r and x 
used in Eq. (1). We assume that an appropriate uncertainty 
propagation technique for computing Rv is available. Design 
constraints are posed using the probabilistic feasibility 
formulation (Du and Chen, 2000), with αm denoting the 
required reliability levels. Note that the system design targets 
vector Tν in Eq. (3) has a different meaning from T, the targets 
 

for deterministic responses in Eq. (1). In the presence of 
uncertainty, the design target vector Tν consists of target values 
that correspond to the probabilistic characteristics Rv.  Setting 
the targets for probabilistic characteristics is important because 
the variations of system performance can lead to customer 
dissatisfaction and additional costs to the producer. On the 
other hand, reducing performance variations often causes 
increase in the cost of product development. For example, in 
considering vehicle engine noise under different operating 
temperatures, design targets should be set for both the nominal 
value of engine noise and its standard deviation.   

Kokkolaras et al. (2004a) proposed a PATC formulation, 
in which expected values (means) are used to represent random 
variables. For example, in their formulation the characteristic 
Rv of a random response R is a scalar (the expected value E(R)).  
Accordingly, design targets were only defined for the nominal 
values of design performance.  

In this article, we provide a more general PATC 
formulation where any interrelated random variables (responses 
and linking variables) are described by general probabilistic 
characteristics.  The formulation for element j optimization at 
level i (Oij) with nij children is shown in Eq. (4) (using comma 
with additional subscript index to denote vector components, 
e.g., for the constraints). 
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         (4) 

The above formulation is generally applicable to all the 
elements of the multilevel hierarchy. Nevertheless, top- and 
bottom-level problems in PATC are special cases of this 
formulation. At the top level of the hierarchy (i=0), there is 
only one element O0 (the element index is thus dropped at this 
level) and there are no linking variables; also, the systems’ 
design targets ν,U

0R  are defined in the vector Tν in Eq. (3).  
Elements at the bottom level do not have any children; thus, the 
first two constraints in Eq. (4) and the ε-variables are 
eliminated. The structure of this PATC is very similar to the 
deterministic one in Eq. (2), except that the deterministic 
targets on responses and linking variables in the objective are 
now expanded to the targets of probabilistic characteristics of 
these quantities, and the constraints are expanded to match 
individual probabilistic characteristics of children responses 
and linking variables.   

3  PATC IMPLEMENTATION ISSUES 
Three major issues need to be addressed to ensure effective 

and efficient implementation of the PATC formulation. The 
first question is what probabilistic characteristics should be 
used to represent the system level responses and the associated 
targets. The second issue relates to the choice of probabilistic 
3 Copyright © 2005 by ASME 



characteristics to match all interrelated random responses and 
linking variables for ensuring design consistency under 
uncertainty.  These two issues are discussed in Section 3.1 as 
they are related to the choice of probabilistic characteristics. 
This discussion leads to the particular PATC formulation that 
matches the first two moments of element responses and 
linking variables, presented in Section 3.2. The third issue, 
addressed in Section 3.3, relates to choices of coordination 
strategies for the PATC process given that information 
regarding uncertainty may be available at different levels in the 
hierarchy. 

3.1  Choice of Probabilistic Characteristics 
Random variable representation in a PATC formulation 

depends on the choice of probabilistic characteristics.   
Moments (e.g., mean and variance) are popular and efficient 
descriptors of the probabilistic characteristics of random 
variables. To set up targets for probabilistic characteristics, 
quality engineering principles can be followed to meet the 
targets on robustness and reliability of a system, subsystem, or 
component.  The robust design principle is accomplished by 
bringing the performance mean to its target while reducing the 
performance variance (Du and Chen, 2000; Kalsi et al., 2001; 
McAllister and Simpson, 2003).  Following the robust design 
principle, targets can be set for the mean and standard deviation 
of design responses, denoted as Tµ and Tσ for µR and σR 
correspondingly, at the top system level.  When considering 
design reliability, targets can be set either for a reliability level 
α or for a percentile performance corresponding to α.   

Determining the target values for system level probabilistic 
characteristics will require introducing an enterprise-driven 
design approach (Cooper et al., 2003; Wassenaar and Chen, 
2003; Wassenaar et al., 2003 and 2004), which is not the focus 
of this study.  The enterprise decision making model captures 
the impact of quality engineering characteristics (mean, 
robustness, reliability, etc.) on product demand and cost, and 
sets up the targets based on the tradeoffs.  

With the PATC, the targets set at the top system level are 
further cascaded to lower level responses, so as to guide the 
quality engineering practice throughout the hierarchy.  In 
particular, if targets for mean and standard deviation are set for 
system level performance, cascading targets on mean and 
standard deviation throughout the multilevel hierarchy guides 
robust design efforts at all levels. 

In addition to matching assigned targets from a higher 
level, it is critical to also match the interrelated probabilistic 
characteristics (responses and linking variables) for ensuring 
design consistency under uncertainty. Matching the whole 
distribution is impractical, and the size of the optimization 
subproblems would also increase substantially if fine 
discretization is desired.  For distributions close to normal, 
matching only the first two moments is sufficient. Otherwise, 
higher-order moments may need to be included. In most 
situations, matching the first four moments would be sufficient 
but not affordable as the approximation of higher order 
moments requires additional computational efforts or larger 
number of samples. Prior knowledge or educated guess of the 
distribution type is useful for selecting appropriate 
characteristics to match. 
 

3.2 PATC Formulation Based on Matching Mean and 
Variance 
As a particular implementation of the general PATC 

formulation, we present a PATC formulation that sets the 
targets on mean and standard deviation for element 
performance based on robust design considerations and that 
also matches the interrelated responses and linking variables on 
the first two moments. The information flow for element j at 
level i (Oij) is shown in Fig. 2.  

Design Optimization Problem Oij
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Figure 2  Information flow for particular PATC formulation 

In Fig. 2, Rij and Yij are vectors of random responses and 
linking variables, respectively.  Rij are evaluated by analysis 
models ( ) ( )( )1 1 1 ijij ij ij iji i n,..., , ,+ +=R f R R X Y . Targets for the mean and 

standard deviation of Rij and Yij are assigned by the parent 
element as [ U

ijRµ , U
ijRσ ] and [ U

iqYµ , U
iqYσ ], respectively. Achievable 

values of mean and standard deviation of Rij and Yij are the 
output of Oij, feeding back to its parent element as [ L

ijRµ , L
ijRσ ] 

and [ L
ijYµ , L

ijYσ ]. Similarly, achievable values of its children 
element responses and linking variables are passed to Oij as 
[

( )1

L
i kR +

µ , 
( )1

L
i kR +

σ ] and [
( )1

L
i kY +

µ , 
( )1

L
i kY +

σ ], and must be taken into 

account for consistency. The optimization problem for Oij is 
solved to find the optimum values for the probabilistic 
characteristics of its local design variables Xij and to determine 
the targets for the responses and linking variables, [

( )1

U
i kR +

µ , 

( )1

U
i kR +

σ ] and [
( )1

U
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µ , 
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( ) ( ) ( )

( ) ( ) ( ) ( )

( 1) 1 1 1

1 1 1 1

R R Y Y

U U U U L L L L
( 1)

U

Given , , , , , , ,  1,...,

find , , , , , ,

, , , ,    1,...,

to minimize

ij ij iq iq i k i k i k i k

ij ij ij iji k i k i j i j

ij ij

ij i k ij

ij ij ij ij ij

, , , k n

, ,

k nµ σ µ σε ε ε ε

+ + + +

+ + + +

+ =

=

− +

R R Y Y R R Y Y

R R X X Y Y Y Y

R R

µ σ µ σ µ σ µ σ S S

µ σ µ σ µ σ µ σ

µ µ

( ) ( ) ( ) ( )

( ) ( )

R R Y Y

R R

1 1 1 1

Y

1 1

U U U

L L

1 1

( 1) ( 1
1

                     

subject to   ,    

   ,    

ij ij ij iq ij iq

ij ij

i k i k i k i k

ij

i j i k

ij ij

ij ij ij ij

n n

ij ij
k k

n
L

i k ij i
k

µ σµ σ

µ σ

µ

ε ε ε ε

+ + + +

+ +

= =

+ +
=

− + − + −

+ + + +

− ≤ − ≤

− ≤

∑ ∑

∑

R R Y Y Y Y

R R R R

Y Y

σ σ µ S µ σ S σ

µ µ ε σ σ ε

S µ µ ε S
( ) ( )

( )
( ) ( )( )

Y

1 1)
1

, ,

1 1 1

    Pr[ , , 0] ,    1,..., ,

where        ,..., , , .

ij

i j i k

ij

n
L

k ij
k

ij m ij ij ij ij m

ij ij ij iji i n

g m M

σ

α

+ +
=

+ +

− ≤

≤ ≥ =

=

∑ Y Yσ σ ε

R X Y

R f R R X Y

     (5) 

We emphasize that Eq. (5) is a particular PATC 
formulation. Even though targets and interrelated random 
quantities are matched for the first two moments in this 
particular PATC formation, local random variables Xij are not 
restricted to normal distributions.  

Note that in the above formulation the number of 
optimization variables is approximately twice as large relative 
to that of the formulation in Kokkolaras et al. (2004a) since 
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each random variable is represented by more than one 
descriptor, i.e., the first two moments. 

3.3  Coordination Strategies 
Similar to the deterministic ATC, the PATC is an iterative 

process based on the optimization of subproblems until 
deviations of probabilistic system responses from targets cannot 
be reduced any further without violating system consistency.  
This iterative process requires an appropriate coordination 
strategy to ensure convergence. Michelena et al. (2002) proved 
convergence properties of the deterministic ATC formulation 
for a specific class of coordination strategies under standard 
convexity and smoothness assumptions.   

When dealing with uncertainties that propagate throughout 
the multilevel hierarchy, one question is at which level the 
PATC process should begin. From an organization’s viewpoint, 
the design process should start from the highest level, as 
usually overall targets are assigned and cascaded down from 
top to bottom. On the other hand, it may be beneficial to start at 
the level where uncertainty cannot be reduced, i.e., at the level 
where we cannot control the variation of random inputs.  
Typically, this happens at the bottom level, where most random 
design variables have known distributions. The bottom-up 
coordination strategy imitates the uncertainty propagation 
process. In this study, both strategies are tested to investigate 
whether the starting level has an impact on convergence speed 
and solution accuracy. Note that we have not conducted a 
theoretical study of convergence properties. 

4  EXAMPLES 
The first example is the geometric programming problem 

adopted from Kim et al. (2000). The second example is the 
design of the V6 gasoline engine in Kokkolaras et al. (2004a).  
The examples are used to investigate whether matching the first 
two moments is sufficient, by comparing results from PATC 
with those from PAIO. A preliminary investigation on 
coordination strategies, top-down and bottom-up, is also 
conducted. 

4.1  Geometric Programming Problem 
4.1.1  Problem Formulation 

Geometric programming problems with posynomials 
(polynomials with positive constants) are known to have a 
unique global optimum (Beightler and Phillips, 1976). The 
deterministic AIO and ATC formulations of the geometric 
programming problem are provided in Kim et al. (2000). The 
PAIO problem is formulated in Eq. (6), and the purpose of 
solving it is to verify whether the PATC is capable of reaching 
the reaching the same optimal solution. In Eq. (6), capital  
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letters are used to represent random quantities, while lower 
cases are kept for deterministic quantities or realizations of 
random quantities. 

The functional dependencies in Eq. (6) are used to 
decompose the problem into a bi-level hierarchy with two 
elements at the bottom level.  Setting R0,1=X1, R0,2=X2, 
x0=[x4,x5,x7],  R11=X3, and R12=X6, the top-level responses are 
computed by 

( )
( )

1 22 2 2
11 4 50,1

0 0 11 12 0 1 22 2 20,2
5 12 7

( , , )
R x xR

R R
R x R x

−⎡ ⎤+ +⎡ ⎤ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ + +⎢ ⎥⎣ ⎦

R f x ,            (7) 

where a comma and additional index denote vector component.  
Similarly, setting X11=[X8,x9,x10], Y11=X11, x12=[x12,x13,x14], and 
Y12=X11, the two bottom-level element responses are computed 
by 

 ( )1 22 2 2 2
11 11 11 11 8 9 10 11( , )R f Y X x x X− −= = + + +X ,             (8) 

and 

 ( )1 22 2 2 2
12 12 12 12 11 12 13 14( , )   R f Y X x x x= = + + +x .             (9) 

The bi-level decomposition of the PAIO problem and the 
associated information flow are shown in Fig. 3. 
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Figure 3  Information flow in the bi-level hierarchical decomposition 

of geometric programming problem 

We assume that design variables X8 and X11 are 
independent and normally distributed with constant standard 
deviations 

8Xσ =
11Xσ =0.1. The randomness in X8 and X11 results 

in uncertainties in all computed responses, each described by its 
mean and standard deviation. Overall system targets are given 
as [Tµ, Tσ].  Since elements O11 and O12 share the random 
design variable X11, it becomes a random linking design 
variable, i.e.,  Y11=X11 and Y12=X11.  

The primary goal of this example is to test the 
effectiveness of the proposed particular PATC method. We use 
Monte Carlo Simulation (MCS) to evaluate the first two 
moments of responses to avoid the influence caused by 
approximation methods for the mean and variance estimation.  
All probabilistic constraints are evaluated by the moment-
matching method: 

0g gkµ σ+ ≤ ,              (10) 

where µg and σg are also obtained by MCS.  The probabilistic 
optimization models for the three elements O0, O11, and O12 in 
Fig. 3 under the particular PATC formulation are formulated in 
Eqs. (11)-(13), respectively. Note that since the standard 
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deviation of the random variable X11 is assumed constant (i.e., 
cannot be controlled), it is not included as an optimization 
variable.  In general, if we cannot control the standard deviation 
of a random response or a linking variable, we are forced to 
omit it from the particular moment-matching formulation of Eq. 
(5). 
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Both top-down and bottom-up coordination strategies were 
tested.  Starting from the top level requires an initial guess of 

11 12

U U
Y Y,µ µ⎡ ⎤⎣ ⎦  and 

11 12

U U
Y Y,σ σ⎡ ⎤⎣ ⎦  when solving O11, and O12 for the first 

time.  Starting from the bottom level required an initial guess of 

11 12

U U
R R,µ µ⎡ ⎤⎣ ⎦  and 

11 12

U U
R R,σ σ⎡ ⎤⎣ ⎦  when solving O0 for the first time.  

For this example, the obtained optimal solutions were identical 
under both coordination strategies. The completion of 
optimizations in all elements is considered as one PATC cycle. 

 

4.1.2  PATC Results 
For the results presented here, the target values for the 

mean and the standard deviation of the system response R0 
were Tµ = [0, 0] and  Tσ = [0, 0].  For each MCS, 10,000 
samples were used. When the maximum value of deviation 
 

terms on ε in O0 was within allowable tolerance (1.0e-4), and 
when each element optimization converged successfully, the 
whole PATC process was considered to have converged to an 
optimal design. For the specified tolerance of consistency 
(1.0e-4), 136 cycles were used to reach the convergence for 
both top-down and bottom-up strategies. The optimal design 
and system-level performances obtained by starting the PATC 
from the top level are listed in Tables 1 and 2, respectively.  
Table 3 compares targets assigned by O0 for the mean of the 
linking variable and the actual values obtained by O11 and O12. 

Table 1  Comparison of optimal designs 
 Initial Point PAIO PATC 

x4 5.0 0.7599 0.7597 
x5 5.0 0.8676 0.8659 
x7 5.0 0.9208 0.9209 

8Xµ  5.0 1.1984 1.2013 
x9 5.0 0.8098 0.7912 
x10 5.0 0.7350 0.7229 

11Xµ  5.0 1.4931 1.4737 
x12 5.0 0.8409 0.8419 
x13 5.0 2.1333 2.1080 
x14 5.0 1.9606 1.9344 

 
Table 2  Comparison of optimal solutions 

 PAIO PATC Confirmed 
PATC Solution 

0 1 0 2, ,

* *
R R,µ µ⎡ ⎤

⎣ ⎦  [3.0875,  3.5968] [3.1019,  3.5599] [3.1006,  3.5488]

0 1 0 2, ,

* *
R R,σ σ⎡ ⎤

⎣ ⎦ [0.0874,  0.0417] [0.0862,  0.0414] [0.0860,  0.0413]
Objective 
function 22.4790 22.3038 22.2168 

 
Table 3  Comparison of linking variable mean values 

 Target Value by 
O0 

Actual Value at 
O11 

Actual Value at 
O12 

Yµ  1.4735 1.4834 1.4640 

 
Tables 1 and 2 show that PATC converges to the same 

optimal solution as that obtained by PAIO. Table 3 shows that 
the optimal mean value of the shared design variable of the two 
coupled elements O11 and O12 is consistent. Since only the first 
two moments were matched during the PATC process, the 
optimal solution was verified by substituting the optimal design 
point back into fully integrated analysis models in PAIO and 
computing the true values of 

0 1 0 2, ,

* *
R R,µ µ⎡ ⎤

⎣ ⎦   and 
0 1 0 2, ,

* *
R R,σ σ⎡ ⎤

⎣ ⎦ .  The 

results are listed in the last column in Table 2. They are 
sufficiently close to those from PATC, indicating that the use of 
the first two moments for matching probabilistic behaviors is 
sufficient for this example. True distributions of R11 and R12 
obtained from MCS using 100,000 samples are compared to 
those incorporating the first two moments only (i.e., assuming 
normal distributions in O0) in Fig. 4. The comparison further 
illustrates that matching the first two moments in PATC is 
sufficient in this case as the lower level element responses R11 
and R12 follow distributions close to normal distributions and 
the linking variable X11 is also normally distributed.  
6 Copyright © 2005 by ASME 
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   a)  Verification of distribution of R11     b)  Verification of distribution of R12 
Figure 4  Comparison of actual CDFs of responses of O11 and O12 with 

the assumed normal distribution CDFs in O0 

PATC reached the same optimum when starting from 
different initial points. We tested different values of weighting 
factors for the terms of the objective function in the problem 
formulation for element O0. If weighing factors for the 
consistency terms (ε) are too large, e.g., 1000, the PATC 
formulation quickly converges to a consistent but suboptimal 
solution. With constant weighting factors, we observed that 
PATC converges to the global optimum, but many cycles are 
needed to fine-tune the search so as to meet the consistency of 
children elements optimization.   

Although not shown explicitly in the formulations, 
weighting factors are introduced to capture tradeoffs among 
different deviation terms in the objective function and 
consistency constraints. A heuristic adaptive weighting scheme 
that increases the values of weighting factors for the deviation 
terms on ε with the increase of PATC cycles was used. A 
formal method for setting proper weights for element responses 
and linking variables in deterministic ATC can be found in 
Michalek et al. (2005). 

4.2  Piston-Ring/Cylinder-Liner Design Problem 
4.2.1  Problem Formulation 

To investigate the validity of moment-matching when 
element responses are known to be not normally distributed, 
and to investigate the performance of top-down and bottom-up 
coordination strategies, we use the same example as in 
Kokkolaras et al. (2004a). The piston-ring/cylinder-liner 
subassembly is designed to minimize fuel consumption of a V6 
engine while satisfying reliability requirements on oil 
consumption, blow-by, and liner wear rate.  A target reliability 
level is chosen as 99.87%, corresponding to a reliability index 
as 3. The PAIO problem formulation is given in Eq. (14). 
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The problem is decomposed into a two-level hierarchy 
with only one element at each level.  The four design variables 
 

are inputs to the bottom-level element, whose responses R1 
include power loss due to ring/liner friction (Rpower loss), liner 
wear rate (Rwear), blow-by (Rblow by), and oil consumption (Roil).  
The top-level element takes only the power loss response R1,1 
(= Rpower loss) as input and provides fuel consumption as the 
system level response R0 (= Rfuel). Once again, a comma and 
additional subscript index denotes a vector component. 

Following the PATC formulation presented in Section 3.2, 
the mean and standard deviation are selected as the 
probabilistic characteristics for responses. The top level 
problem O0 is formulated in Eq. (15). Because there is only one 
element at each level, there are no linking variables in this 
example. PATC constraints in O0 are used to ensure consistency 
of child element responses with obtained targets. 
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           (15) 

The formulation of the bottom level element O1 according 
to the PATC process is shown in Eq. (16).  The random design 
variables X1 and X2 denote piston-ring and cylinder-liner 
surface roughness, respectively. Based on measurements, they 
are normally distributed with 

1 2X Xσ σ= = 1µm. The 
deterministic design variables x3 and x4 denote Young’s 
modulus and hardness of the liner material, respectively.  There 
are three reliability constraints related to the subassembly’s 
performance, i.e., liner wear rate (Rwear), blow-by (Rblow by), and 
oil consumption (Roil). The problem for element O1 is solved by 
the Sequential Optimization and Reliability Assessment 
(SORA) method (Du and Chen, 2004). To ease the 
computational burden, the analysis models in O0 and O1 are 
surrogate models built using the cross-validated moving least 
squares method (Kokkolaras et al., 2004a). 
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   (16) 

4.2.2  PATC Results 
The targets for the top system performance (fuel 

consumption) were set as [Tµ, Tσ] = [0, 0]. The means and 
standard deviations in Eqs. (15) and (16) were evaluated by 
MCS.  The convergence criteria for PATC were the same as 
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those for Example 1. For comparison, the PAIO problem was 
also solved using the SORA method (Du and Chen, 2004).  

Two probabilistic optimization scenarios were examined.  
In the first scenario, the mean and standard deviation values are 
used in the objective functions of the PAIO (Eq. (14)) and 
PATC problems (Eqs. (15) and (16)) without normalization  
The optimal solution results using top-down and bottom-up 
strategies are listed in Tables 4 and 5. 

Table 4  Comparison of optimal designs (scenario 1) 
Design 
variable Description Initial 

point PAIO PATC top-
down 

PATC 
bottom-up 

1Xµ  (µm) Ring surface 
roughness 1.0 4.0 4.0063 4.0 

2Xµ  (µm) Liner surface 
roughness 1.0 6.1193 6.1130 6.1193 

x3 (GPa) 
Liner Young’s 

modulus 100 80 80.0445 80 

x4 (BHV) Liner hardness 100 240 240 240 
 

Table 5  Comparison of optimal objective function values 
(scenario 1) 

 PAIO PATC 
(top-down) 

Confirmed 
top-down 
solution 

PATC 
(bottom-

up) 

Confirmed 
bottom-up 
solution 

*obj  2.855e-1 2.8537e-1 2.8554e-1 2.8537e-1 2.8549e-1 

fuel

*
Rµ  5.343e-1 5.3375e-1 5.3429e-1 5.3375e-1 5.3425e-1 

fuel

*
Rσ  8.391e-3 8.6527e-3 8.3825e-3 8.6527e-3 8.3911e-3 

power loss

*
Rµ  3.922e-1 3.9175e-1 3.9234e-1 3.9159e-1 3.9218e-1 

power loss

*
Rσ  3.448e-2 3.5163e-2 3.4438e-2 3.5204e-2 3.4478e-2 

 
As shown in Table 4, the two coordination strategies lead 

to the same optimal solution, which is also the same as that 
from the PAIO formulation. In Table 5, the optimal response 
moments under columns “PATC” are confirmed by substituting 
the optimal points back into the PAIO fully integrated analysis 
models for Rfuel and Rpower loss .  The values of obj* were 
computed as ( ) ( )fuel fuel

2 2
T T* *

R R
µ σµ σ− + − . The confirmed solutions 

in Table 5 are very close to those from PATC and PAIO, 
indicating that use of the first two moments for matching 
probabilistic behaviors is sufficient for this example.  

The variance of fuel consumption in Table 5, 
fuel

*
Rσ , is very 

small compared to the optimal mean value 
fuel

*
Rµ .  Using non-

normalized objective functions in Eq. (15) is biased towards 
minimizing the mean of fuel consumption.  The results we 
obtained are meaningful because they are close to those from 
Kokkolaras et al. (2004a), which were obtained only 
considering the first moments of probabilistic performance. 

In the second scenario, the mean and standard deviation 
values in the objective functions of the PAIO and PATC 
problem formulations were normalized. The mean and standard 
deviation terms of the top-level element response (fuel 
consumption) in O0 are normalized by their best achievable 
values, 

fuel

min
Rµ  = 0.5359 and 

fuel

min
Rσ  = 0.0033, respectively.  

Similarly, the mean and standard deviation terms of the bottom-
level element response (power loss) in O1 are normalized with 
 

power loss

min
Rµ  = 0.3916 and 

power loss

min
Rσ  = 0.0129.  The obtained optimal 

design and objective value are compared in Tables 6 and 7. 
Table 6  Comparison of optimal designs (scenario 2) 

Design 
variable Description Initial 

point PAIO PATC by 
top-down 

PATC by 
bottom-up

1Xµ  (µm) Ring surface 
roughness 1.0 7.0 7.0 7.0 

2Xµ  (µm) Liner surface 
roughness 1.0 7.0 7.0 7.0 

x3 (GPa) 
Liner Young’s 

modulus 100 340 340 340 

x4 (BHV) Liner hardness 100 234.7299 234.7299 234.7299 
 

Table 7  Comparison of optimal objective function values 
(scenario 2) 

 PAIO PATC 
(top-down) 

Confirmed 
top-down 
solution 

PATC 
(bottom-

up) 

Confirmed 
bottom-up 
solution 

*obj  1.9326e+0 1.9074e+0 1.9369e+0 1.8629e+0 1.9369e+0

fuel

*
Rµ  5.5131e-1 5.5016e-1 5.5132e-1 5.5100e-1 5.5132e-1

fuel

*
Rσ  3.0855e-3 3.0487e-3 3.0931e-3 2.9615e-3 3.0931e-3

power loss

*
Rµ 4.6008e-1 4.5555e-1 4.6011e-1 4.5902e-1 4.6011e-1

power loss

*
Rσ 1.1863e-2 1.1615e-2 1.1892e-2 1.1005e-2 1.1892e-2

 
In Scenario 2, top-down and bottom-up strategies also 

converged to identical optimal points and the confirmed 
optimal objective values are very close to those from the PAIO.  
Using the normalized objective functions results in 
emphasizing the standard deviation of fuel consumption, and 
the probabilistic optimization reaches a different optimal 
solution from that found in the first scenario. For this bi-level 
problem with only one element at each level, the top-down 
PATC converges after two cycles while the bottom-up PATC 
converges after one cycle. 
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   a) PDF of Rpower loss obtained using the       b)  PDF of Rpower loss obtained using the 
objective function without normalization           normalized objective function 

Figure 5  Verification of distributions of power loss in two scenarios 

The actual PDF of the power loss and the assumed normal 
PDF in O0 are plotted in Fig. 5 for both scenarios. In both 
cases, the actual PDF of the power loss has two modes.  
However, matching the first two moments in PATC seems to be 
sufficient for this example and can lead to the same solution as 
that of the PAIO. The main reason is that the system level 
analysis model ffuel(Rpower loss) is nearly linear.  Therefore the 
first two moments of fuel consumption are close to linear 
functions of the first two moments of power loss, regardless of 
the actual distribution of the power loss. Even for nonlinear 
models, it is sufficient to consider the first two moments as 
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long as the first two moments of lower level performance 
dominate the uncertainty propagation on higher level responses. 

Because the objective functions of the optimization 
problems for elements O0 and O1 involve multiple deviation 
items, we find that special care must be taken when selecting 
the starting point, weighting factors, and normalization 
technique. Different starting points should be used if local 
optima are suspected. For the tolerance variables (εµ and εσ), 
weighting factors can neither be too large nor too small.  Large 
weights may trap the optimum at a consistent but inferior 
solution after the first few cycles, while small weights may 
cause slow convergence to a consistent solution. 

5  CONCLUSIONS 
We extended previous work on ATC under uncertainty to a 

more general setting. We discussed the meaning of dealing with 
design targets in a probabilistic framework. Following 
established quality engineering principles, we proposed a 
particular PATC formulation that matches the first two 
moments of random responses and linking variables with 
assigned targets.  

An important issue related to the accuracy of the optimal 
solution by PATC is how many moments are sufficient to 
match random responses and linking variables.  Based on our 
empirical studies using two examples, when matching the first 
two moments of random variables, PATC converges to the 
same optimal solution as PAIO under two conditions: 1) when 
the distributions of all matching quantities are close to normal 
distributions (i.e., the true mean and variance of matching 
quantities are close to those of assumed normal distributions, as 
observed in the geometric programming problem), and 2) when 
the first two moments to be matched have dominating impact 
on the optimal solution, as observed in the ring/liner problem; 
otherwise, PATC may lead to a different optimum with an 
inferior objective function value. In that case, higher-order 
moments may need to be matched in PATC.  We also need to 
point out that the objective functions in PATC often involve 
multiple deviation items.  When multiple equivalent optimal 
solutions exist, a situation that often happens in robust design, 
PATC provides the same optimal objective function value as 
that from PAIO, but the two approaches may reach different 
optimal designs.  As with ATC and nonlinear optimization 
problems in general, local solutions may be obtained by PATC, 
and determining the global one presents the usual challenges. 

Future research may be conducted in the following 
directions. First, distributions of random quantities matched in 
PATC are usually not known beforehand, and so it is desirable 
to create an efficient technique to determine when higher-order 
moments are necessary. Second, the number of decision 
variables increases in each element optimization problem under 
PATC when higher order moments are matched. It is desirable 
to investigate the impact of the order of moments on the 
convergence efficiency. Third, coordination strategies specific 
to the nature of probabilistic optimization problems will need to 
be investigated further to enhance convergence as 
computational costs will rise with increased problem size and 
complexity. Finally, techniques can be developed to identify 
multiple equivalent solutions in upper level problems in PATC 
so that multiple candidate targets can be used to explore the 
design solutions in lower level elements. 
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