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Target cascading is a key challenge in the early product development stages of large
complex artifacts: how to propagate the desirable top level design specifications (or

targets) to appropriate specifications for the various subsystems and components in a
consistent and efficient manner. Consistency means that all parts of the designed system
should work well together, while efficiency means that the process itself should avoid
iterations at later stages, which are costly in time and resources. In the present article
target cascading is formalized by a process modeled as a multilevel optimal design prob-
lem. Design targets are cascaded down to lower levels using partitioning of the original
problem into a hierarchical set of subproblems. For each design problem at a given level,
an optimization problem is formulated to minimize deviations from the propagated targets
and thus achieve intersystem compatibility. A coordination strategy links all subproblem
decisions so that the overall system performance targets are met. The process is illus-
trated with an explicit analytical problem and a simple automotive chassis design model
that demonstrates how the process can be applied in pradtiz®l: 10.1115/1.1582501
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Introduction Target cascading in automotive vehicle design can be viewed as
a four-step processi) specify overall vehicle mission targets,

Much of the motivation for the work described in this article ropagate vehicle targets to subsvstem and component Sub-
comes from recent efforts in the automotive industry to formaliz{% pag 9 Y P

the product development process and to take full advantage t?{‘%it;i’g\'l'g ?ﬁ:i'f]r;e\geggtlﬁjy:ﬁr_?;’ Selfgsgg%zr?fgdtﬁg{nﬁ%nents
computer-aided engineerif@AE) tools. A complex product de- P gets,

velopment process is most efficient when the various requiré%ssilti'gg gs;'glg ?Zetsrgvﬁé?g (\éi\hécﬁon;:asizlc;rr]etaa?aﬁlt:\blz ht'g g;\c;_
design tasks can be accomplished in a truly “concurrent” mann P pprop

In some sense, concurrency means that tasks should be conduFéé%‘E design decisions that can be made through a formal decision-

in parallel without isolation from each other, so that decisions a 'Imgl procelss._ The drelsults, (;)fthc_ou_rse, will :?e lashgtl)lod as. ttge
made taking all product requirements into account. Product teafi@!1aDI€ analysis mocels, an IS 15 a practical chaflenge: the
of diverse specialists are formed and communicate regula odels must capture the salient characteristics of the system in-

actions without being burdened by cumbersome details. Typical

Ironically, experience shows that such efforts also have serio E to0l d1o b df histi d vsi d
adverse effects because decisions are not made with suffici tools tend to be used for very sophisticated analysis and are

speed when trying to satisfy everyone’s viewpoint. In anoth&*Pensive to develop and to compute, while “back-of-the-
sense, then, concurrency means that each task should be &m(_elope calculations d(.) not capture the comple_X|ty of the_ inter-
ducted in isolation or with the least amount of interaction wit@Ctions. In our presentation of the target cascading formalism be-

other tasks, so that each specialist or team can concentrate on g¥ 2vailability of the appropriate models is assumed.
kMultilevel optimization methods have been well studjéd-3].

own specialized task. Yet, clearly, interactions do exist, and ta& llab - Gty ) cularly i ina in th
isolation could lead to costly downstream iterations. ollaborative optllmlzhgtlc])crﬁ4—6|] IS pa(rjtlcg arygnter_estmg |r;]t e b
The solution to this dilemma is to identify the key links amond@"€S€nt context. In this formulation design objectives in the sub-
lems attempt to minimize the discrepancy between interaction

design tasks, reach the associated trade-off decisions early, bi d should b h : S
then let the individual tasks be conducted separately. The tar§@f'aples and should become zero at the optimum. Constraints in
_original optimization problem are distributed in the subsystem

cascading process attempts to achieve just that. Subsequent i

actions can take place when the specifications given to each tgggmizatio_n problems, and subproblem objecti\_/es becomg equal-
are difficult or impossible to meet and another round of joirlfy, constraints at the system level. The equality constraints are

decisions is necessary. Important specifications for the entire sjgformulated in two ways: “C¢" and “CO," [7]. In CO, system
tem as well as for each system elemé&ubsystems and compo- evel variables are directly matched with their subsystem counter-

nents are first identified, particularly those that will have influ-Parts, and in CQ system level constraints are square sums of
gg iations. During iterations, subproblems may return different

are assigned at the top level of the system, usually based on m ues for an interdisciplinary variable, which can cause conver-

agement criteria. These targets are propagated to the rest of 9g8¢ce diffi(_:u!ties_ in that equality _constraints at the system level
system, and appropriate values are determined for the expeci& Not satisfied in the GGormulation. In CQ, the system level
performance of each element of the system. Design tasks are eonstraints do not satisfy the regularity condition, which is a form

ecuted for each individual element, and interaction with the rest 8f constraint qualificatior8]. Convergence difficulties are not
the system is revisited only when a target cannot be met. uncommon for coordination strategies needed to solve multilevel

optimization problems.

Contributed by the Design Automation Committee for publication in ther} T.hOUQE dlﬁerﬁnt. from ;:oll_at_)or_a_tlve opt_lm_lzatlon, target cas_-
NAL OF MECHANICAL DESIGN. Manuscript received July 2001; rev. October 2002cading shares t.e idea o minimizing deviations bEtween. design
Associate Editor: J. Renaud. problems to achieve consistency but can be shown to satisfy con-
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straint qualificationd9]. In collaborative optimization, analysis into subproblems at multiple levels, the linking variables between
models are decomposed at the same level, and a coordinasoibproblems at the same level and the response connecting sub-
problem is defined for a bilevel optimization problem. Without @roblems at different levels must be identified. The definition of
convergent coordination strategy, it is not clear how to exterfdesponse” will be elucidated in the next section, but the term is
collaborative optimization to a multilevel hierarchy. In target casised here to indicate the output of an analysis mdddd., a
cading, the multilevel hierarchical problem is shown to be equivaimulatior). At each subproblem element, an optimization prob-
lent to a special case of hierarchical overlapping coordinatidem is formulated. A coordination strategy is required to ensure
[10—-13 and this allows convergence pro¢fs11]. In the present convergence of the solutions generated by subproblem optimiza-
study, models are checked for feasibility and boundedh&3k tions to the original design problem solution.
and for constraint qualifications of the additional deviation In a typical hierarchical coordination strategy, there is a master
constraintg 8,9]. problem and one or more subproblems. The master problem is
The next sections present a general description of the steymdved for the linking variables that are then input as parameters
involved in the target cascading process, followed by the matto the subproblems, and the subproblems are solved for local vari-
ematical statement of the resulting multilevel hierarchical prolables that are input as parameters to the master problem.
lem. An analytical example helps fix the mathematical ideas, andIn target cascading a hierarchical coordination strategy is used.
an automotive chassis system design problem shows how the fdowever, unlike the typical hierarchical coordinatiolinking
mulation can be used in practice. We will assume that a vehialariables are transferred to lower level problems as targets after
can be hierarchically decomposed into levels: supersystem, sgselving the top-level problenturthermoresome of the top-level
tems, subsystems, components and so on. For example, in aoimization variables are also transferred to the lower level as
hicle design, supersystem is ttentire vehicle; systems are pow- response targetdn the low-level problem, the objective function
ertrain, chassis, and body; and subsystems are engine, bodyignto minimize the discrepancy between the target values deter-
white, suspension, etc. However, the target cascading processiged at the top level and the linking variables and responses.
applicable to any hierarchical decomposition of a system. These ideas will become more clear in the mathematical formula-
tion of the next section.

Target Cascading Process Description Embodiment Design. Once targets are set for the individual

Target cascading s a system design approach enabiing wop IE10R R0 Tl 8 S ECEe | SO R0 RNES 4
design targets to be cascaded down to lower levels of the model 9 gnp ! 9

ing hierarchy. The steps aré) development of appropriate analy_retsporlies, _arelspemgeld. Malgtfalntlkr‘]g ttheset values d‘f"s fixed param-
sis models(ii) partitioning the systentjii) formulating the target reeetj:,ce debSIrEsz)fengjgt;IZ dufr(]ao dlenls fgr 2?@03%5;% Iggsiprr?c\?vshsi'c?]re
problems for each element of the partition, aitd) solving the ﬁ have rxan more variables and design degrees ofgfréedom
partitioned problem through a coordination strategy to compute %Ytl)cal design groblems can be formulateg andgsolved. If current-
fﬁigeed sttirp?se ts. In this section we discuss the issues InVOIVe‘jd'(!,;]sign targets cannot be realized using more detailed m@elgls
) the new problem is infeasiblethe designer must either explore

Development of Models. Existence of appropriate analyticalthe local constraints for relaxation or return to the target cascading
or experimental, but quantitative, models for the performance pfocess and request adjustments there.
system elementgsystems, subsystems and componeigsas- The steps described above are not easy but are systematic.
sumed. If a model is not available, development of a low-fidelitiforcing design teams to create the correct models and to negotiate
model by experiment, simulation, and/or a response surfad¥e selection of targets goes a long way toward a successful pro-
method is necessary. Since computationally expensive models e@gs. The optimization formalism and attendant numerical solu-
generally not appropriate for target cascading, inexpensive modé#is help put any further needed negotiations on a rational basis.
should replace expensive ones through surrogate modeling. Given
the analysis models, verification of the individual optimal design . .
models for all system elements for feasibility and boundednessfithematical Formulation

necessary(see, e.g., Papalambros and WildiS]). This model In this section, the mathematical statement of the target cascad-
development stage is time-consuming, but without good modefgy process is given for a product design example composed of
subsequent design decisions may be of little value. supersystem, system, and subsystem levels, which correspond to

top, middle and bottom levels of the modeling hierarchy. How-
ever, the target cascading formulation is not limited to a three-
level modeling hierarchy, but can be further expanded to more
Levels depending on the complexity of the original product design
roblem. The general formulation follows at the end of the
ction.

System Partitioning. In general, system and model partition
ing can be done in several ways: namely, object, aspedisci-
pline), and model-based partitionirjd4]. Object and aspect par-
titioning are “natural” partitions, and some large companie
employ both partitions simultaneously in matrix organizationg
For example, an automotive manufacturer partitions its organiz?iq
tion into powertrain, body, chassis, and electronics divisions butDesigning With Targets. The original design problem can be
also dedicated groups for durability, packaging, dynamics, safegyated as follows: find a design that minimizes the deviations be-
or noise-vibration-harshnes@NVH). Model-based partitioning tween design targets and actual responses while satisfying design
uses matrix or graph representations derived from the actual me@nstraints. Alternatively, determine the values of supersystem,
els to find a properly “balanced” partitiofl5,1¢. After partition-  system and subsystem design variables that minimize the devia-
ing, design variables are categorized into linking variables, coion of supersystem responses from supersystem targets. The
mon to more than one subproblem, and local variables belongiggginal design problen, is formally stated as follows:
only to one subproblem. L

For target cascading the easiest way is to start with an object Po: Minimize |T—R]
partition and recognize that each design problem at a given level

is likely to be multidisciplinary. The exact partitioning choice will X
also depend on the availability of models, so this task should be where R=r(x)
done carefully and considered as subject to revisions during pro- )
cess implementation. subject to
Target Cascading. After partitioning the original problem gi(x)<0 i=1,... m
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sponse is an output from an analysis model, and a linking variable
is a common design variable between two or more design prob-
lems sharing the same parent design problem.

To represent the hierarchy of the partitioned design problem the
set of elementg; is defined at each levél For each elemerjtin
the setE;, the set of childrerC;; is defined, which includes the
elements of the seE;,, that are children of the element. An
illustrative example is presented in Figure 1: at level of the parti-
tioned problem we havk,={B,C}, and for element B” at that
level we haveC,g={D,E}.

Figure 2 shows interactions between analysis models and de-
sign models at the system level. Targets for system resp@ﬁ;ﬁes
and system linking variableg) are passed down from the super-
system level. After solving the system design problem, target val-
ues for system responsBS,; and system linking variableg; are
passed up to the supersystem level. Likewise, for subsyssm
RY, andyl; are passed down as targets from the system-level
design problem, whered&., andy- are returned to the system
level. Responses from subsystasl Ry, responses from sub-
systemss2 Ryo, system local design variabl&g,, and system
linking variablesy, are input to the analysis model;, whereas
86%tem response’,, are returned as outpui.

Element j

Level i

] O]

Fig. 1 Example of hierarchically partitioned optimal design
problem

- ) ]

hi(x)=0

XE’HH

j=1,...mg

X=X k=1,...)n

@

The objective is defined as the discrepancy between the tar

vector T and the response vect® obtained from the analysis

modelr(x); g andh are inequality and equality design constraint

vectors, and the design variabkeis defined within lower and  Target Cascading at the Top Level (Supersystem Level.

upper boundsx™" and x™® At the top level of the hierarchy the problem is stated as follows:
In theory, given models for the supersystem, systems and sulinimize the deviations between top level responses and targets

systems, formulating and solving the above design problem asghject to supersystem design constraints and tolerance con-

single optimization problem is possible using classical optimizatraints that coordinate system responses and system linking vari-

tion techniques. However, this single problem approach is ofteles. Formally,

impractical and even computationally impossible. An alternative

is to solve the problem in a systematic way utilizing a multilevel
formulation, namely, the target cascading process. The target cas-
cading problem can be stated then as follows: given a set of su-
persystem targets and models for all design elemémasnely,
systems, subsystems and componed&termine element targets

by partitioning the overall design problem, while satisfying feasi-
bility of element designs and achieving top-level targets.

Modeling Hierarchy. Large-scale design problems usually
possess a multilevel hierarchical structure. Two types of models
exist in the modeling hierarchy of the target cascading process:
optimal design modelB and analysis models (Fig. 2). Optimal
design models use analysis models to evaluate supersystem, sys-
tem and subsystem responses. Thus, analysis models take design
variables, parameters and lower-level responses as inputs and re-
turn responses for upper-level design problems as output. A re-

Supersystem

Psyp: Minimize [|Rgyy— Ty +er+ &
with respect to (Xgp,Ys:Rs,€r,&y)
where  Rg,=rsud Rs Xsup)
subject to

> IR k= RS ll<2r

e Csup

@

> ek Ysdl=eg,
ke Csup
gsup( Rsupysl(sup) = 01

~min_—%;
Xsups Xsu

hsup( Rsupvs‘(sup) =0

~max
=~Xaiip

l:l Optimal Design Model
Q Analysis Model

U v L L
Level (sup) Rsl’ysl L 11151,)’51
System
Level (s) ’ Psl
y A 4
Xsl'ysl’Rssl’Rss2 R51
ro (X .,y..,R R ) RsUsl Rfsl R352 Rfsz
s1V7s1P 751" Tss1 Tss2
U L U L
Yss1 ¥Yss1 Yss2 Yss2
Subsyst BN 2 S
ubsystem
Level (ss) L Pssl | PssZ

Fig. 2 Data flows from and into the system-level design problem
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whereCgp=1{ky, . .. ’kcsu;}’ Csupis the number of child elements subject to (4)
of the supersystem-level problem ami=(Rsq, ... ,Rs ced - -

" g ) . . < ; . B )=
Rs=Rs1U ... URs,csup andRsiNRy ;= for i#]. The objec- Ossi(Rss ’X_SSJ Yss)) <0, hf'SJ(RSS' Xssj Yssj) =0
tive that minimizes deviations between design targets, and Xog=Xssj=Xsa] Yos] =Yssj<Yes]

Z‘:\Eg;sysfrzg rest%ogzﬁ%?rzztrgovﬂfhegsbgf ?ﬁg'?gsdi\ggg:r;r?rfr{hAt the bottom of the model hierarchy, subsystem design variables
S sterleI{Q arfgthe Svstem linking variabl AtF():onver ence Sre input to the analysis modelgs; returning responses to the
Y N Y 9 &% 9 ' subsystem level as output. In Ed), the objective is to minimize

deviation tolerances become zero as the system linking variab R deviations between the subsystem respoRgesand the tar-
converge to the same values for the different system design p&%_ts set at the system IevEIg as well as be%i/een the sub
lems. To account for large target magnitude differences, the a€- L ' sj’ -
viation terms are multipglJied bg/ pena?ty constants. The penalgyStem linking variablegss; and the targets from the system level
constants are selected so that the magnitude of the deviation te¥ws - Target deviation tolerance constraints are not introduced in
are of the same order. The values of the system responses m&h(4) because there are no lower-level design models that need

RL, whereR. is the target response calculated at the systeld Pe coordinated.
optimal design problem. Finallgs,, and hg,, are inequality and  General Formulation of Target Cascading Problem. The
equality design constraints at the supersystem level, subsets ofgfijeling structure presented in Fig. 1 can be extended to a gen-
original constraintgy andh. eral multilevel hierarchical structure. Problefy for the j parti-
] ) tion element at the level is defined as follows: Minimize the
Target Cascading at the Middle Level (System Leve). deviations between current level responggsand linking vari-
Similarly at thejth system level, the problem is stated as in anblesyij and the targetﬁEH andyilf, subject to design constraints

(3): Minimize the deviations for system responses and systely (pjerance constraints that coordinate responses and linking
linking variables, subject to system design constraints and dev{aiisples from one level below Formally

tion constraints that coordinate subsystem responses and sub-

system design linking variables. P;: Minimize [|R;;—RS[+Ilyi; — il + er+ &,
Ps;: Minimize HRSJ—jo||+\|ysvj—y‘;’j\|+sR+ &y with respect toX;;,Vij ,Yi+1)j Rii+1)j &R &y
with respect toXs,Ys | Yss:Rss:er 8y where Rjj=r1i;(Ri+1); . Xij »Yij)
where Rgj=rg;(Rss,Xs | Ys,j) subject to 5)
stibject to k;__ HR<i+1)k*Rh+1)kH$ER
> IIRssk— Rsskll<&r (3) '
o E ‘|Y(i+1)k*yl('i+1)k”$8y
S Iyeaevhal=s
keCs,j ° ° g Gij (Rij Xij ,¥ij) <0, hij (Rij ,Xij ,yij) =0
0s,j(Rsj %sj ¥s))<0, hgj(Rs;j Xs;jYs;)=0 X< <X <y <y
yg‘j}”s?&js@f‘x, yg‘}”sys’jsy’;‘fx Here c;; is the number of child element dth level problem,

whereCg;j={k, ... :kcs-}‘ ¢, being the number of child ele- Cij=1ki, ... ,kcij.}, anq Ri+1n=(Rg+11:--- ,R(|+1),cij)- This
3 concludes our discussion of the formal statement of the problem.

ment of system-level problem, aids=(Rss1, - - - Rssc, ). TN The next section illustrates these ideas with two examples.

objective function minimizes the discrepancy between system

level responseR,; and the targets set at the upfgsupersystemm lllustrative Examples

level RY, , as well as between system linking variabjeg and ) . ) . i
j The first example is a geometric programming problem, which

s,
is general enough to illustrate the key ideas of the target cascading

the targets set at the supersystem |QX§-?]‘|. Therefore,jo and
U . . . .

ys,j are determined by solving E(®). Target deviation tolerances o, ,jation. The second example is an automotive chassis system

ﬁ'esign problem involving two simple quarter-car models.

are minimized to achieve a consistent design with minimum di
crepancies between the subsystem level respoRggs&nd the
target responseR;, from the subsystem design problem, as well A Geometric Programming Problem. Geometric program-

as between the subsystem level linking varialyigsand the target Ming problems with posynomials are known to have a unique
valuesy., from the subsystem design problem. Since the systegipbally optimal solutior{17]. The example here has a quadratic
level is located in the middle of the overall hierarchy, this formu@Piective function, 14 design variables, 4 equality and 6 inequality
lation is the most comprehensive, capturing all interactiongonstraints, and nonnegativity constraints for all design variables,

through linking variables, target responses from the lower lev@p Shown in Eq(6). Equality constraintd,, ... h, can be di-
(superscripL), and target responses from the upper legeper- rected as active inequality constraints in negative unity forgj.
scriptU). Minimize f=x3+x2
Target Cascading at the Bottom Level(Subsystem Leveél. X3,Xg, -+ - X1a
The jth subsystem level problem is stated in E4): minimize the )
deviations for subsystem responses and subsystem-level linking subject to
variables subject to subsystem design constraints. Formally, x3‘2+x§ X§+ng ) x§+x§
inimi = < : <
Pss.j: Minimize ”Rss,j_Rgs,j”"—Hyssj_ygst 9r: Xg 92 X% 9 Xil
with respect t0Xg;,Yss) _ Xg 2+ X2, . X2+ X2 _ X2+ %2,
- 94:——z— =1 gs:——=—=<1 ge: 7—=1 (6)
where Rggj=rgsj(Xssj:Yssj) X11 X3 X14
Journal of Mechanical Design SEPTEMBER 2003, Vol. 125 / 477
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Table 1 Optimal designs from All-At-Once  (AAO) and Target Chassis Design Problem. Figure 4 shows a schematic dia-
Cascading (TC) formulations gram of a half-vehicle analysis model at the vehicle and system
levels. The vehicle model is composed of two symmetric quarter-

ARO T car models, which takes system level responses and variables as
X1 2.84 2.80 inputs and returns outputsuch as acceleration of body mass and
Xo 3.09 3.03 relative displacement between sprung and unsprung maases
ii (2)::;2 é;’g vehicle level responses. Sprung mass is divided into two parts,
Xs 0.87 0.87 body-in-whitem,, and the rest of the system,. At the vehicle
Xg 2.81 2.79 level, the body-in-white(BIW) is represented by a single rigid
X7 8-3‘7‘ 8-8? body mass with stiffnesk, and damping coefficiert,, mounted
;Z 0.87 0.87 on a spring with stiffnesg and a damper with coefficiert at
X10 0.80 0.80 the front and rear of the vehicle. At the system level, the mass
X11 1.30 1.30 representation is expanded into a finite element beam model that
X12 0.84 0.84 takes eight different section thicknesses as input design variables
iii i:gg %:gi and returns the weight as the system level response. For simplic-
17.61 17.02 ity, suspension springs in the vehicle model are modeled as two
£, N/A 0.0001 parallel springs at the system level; the model takes two spring
€2 N/A 0.0017 constants as input variables and calculates the suspension spring
3 N/A 0.0029 constant as the system level response. As we move down from the
top vehicle level, complexity and completeness of models are
increased.
The vehicle-level optimal design probleRy is stated in Eq.
hyx3=x3+x,24+x2  hyix3=x2+x2+x2 (8). Design targets are set for NVH and packaging that correspond

to acceleration of the body; and the relative displacement of
sprung and unsprung massegs<z,.), respectively. The road
X3,X4, « + .« X12=0 profile i_nput iszp. Targe.tsT1 and T, for NVH and packaging,

respectively, are set as in Table 2, and values for upper and lower

If we assume thak,, X,, X3, Xs are responses from analysishounds for design variables are given in Table 3. The objective is

modelsry, 1, r's, 4, the equality constraints can be regarded &g minimize the sum of deviations of the two responses from the

analysis models and the overall problem can be stated as in Eftgets, with target deviation tolerancesande,.

(7). This problem can be partitioned as shown in Fig. 3. Super- o

system analysis models take supersystem design variaples, P, Minimize|zi— Ty +[(zs— 249 — Tol + &1+

X7 and system responses and Xg and return supersystem re-

sponsesx;, X,. System analysis models take system design vari-

2 2 -2 -2 2 2 2 2 2 2
h3:X3=Xg+Xg “+ X190 + X771 hgiXg=X71+ Xt X3+ X1,

with respect toks,my,cy ,Kp,Cp,Mg, 81,85

ablesxg, Xg, X10, X11, X12, X13, X14 and return system responses where
X3, Xg. The linking variable between system level optimal design
H " ’ !
problems isxy;. Only the values okj, Xg andx,; are passed up M2+ Cop — 2 1 24p) + Kep( — 251+ 255) =0

and down between the supersystem and system optimal design . , , , ,
problems. Top level target values are set to zero. Table 1 shows MsiZs1t Csa(Ze1 ™ Ze) +Ksa( 21~ Zs2) €121~ Z)
optimization results obtained using a single All-At-On@AO) Ky (Zey— Zy0)

formulation, and a target cascadififC) formulation. Objective, shifsl fus
variables and tolerance values at the optima are given in the table. =0

The solution using the AAO formulation is the unique global op- . , , , ,
timum, whereas the TC solution is the same within a tolerance. ~ MusZus™ Cs1(Zs™ Za) + K1 (Zus— Zs1) + Cus( 25~ Zp)
Note that the value of the objective in TC is smaller than that of
the objective in AAO. This is because of the deviation tolerances
€1, €5, €3 allowed after matching the lower-level responxés =0 (8)
andxg .

+ kus( Zys— ZO)

L subject to
Minimize = f=x3+x; Imy—mgll<eq.[[ks— kil <e,,ch"<cr=cy™
X3, X4y« X1a ki< k, < ki1 mIMN< my < m® cMi< ¢ < M
where K< k=< kM@ mIMN< mo< m"®
Ry=X1=11(X3,Xq,X5) = (X34 X, *+xE) V2 The system-level design problem for the BIW is given in E).

Ry=X,="5(Xs5,Xg,X7) = (X + X&+ x2) below. The objective is to minimize the deviation of BIW weight
from the target calculated at the vehicle level. A finite element
Ray=X3="3(Xg,Xg,X10,X11) = (X3+ Xg 2+ X &+ X5.) 12 analysis code takes section thicknesses of all the beams compris-

T ing the BIW structure and returns weight and strain energy as
R4=Xe=r4(X11,X12,X13,X14) = (XT3 XTpF XT3+ X1y) (7)  outputs. Constraints on the strain energy per unit volumgor
each beam are specified.

subject to
Minimi _ Y
. X3 242 . X2+ xg2 . X2+ X2 P, : Minimize||m,—mg ||
91 x2 =1 02 x2 <1 gs X2, =1 with respect to(ty, ... tg)
X5 24+, . X2+ X7 x2,+ %2, where (J,mp)=r(ty, ... tg)
< = =< )
942, 9s- 2. 92, subject to 9)
X3, X4, « - - X14=0 J=sJmax
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Fig. 3 Partitioning of geometric programming example problem

mIMN< my, < mM level. The simple analysis model identifies the relationship be-
tween the overall suspension stiffness and the two component
The system-level design problem for the suspension spring SBMng constantky andks, as follows:
stated in Eq(10). The objective is to minimize the deviation of P, :Minimize| ks— kY|
suspension stiffneds, from the targekgJ calculated at the vehicle
with subject to kg K,

where k= kg1 + Kgp

Vehicle e System

P Table 2 Chassis problem targets
—— [ h
| e Ta_\rget Target
I my N oF = - BF, Variables Values AAO TC
NVH (m/s) 0.01 0.023 0.01
b ky2bg | Packagingm) 0.002 0.0016 0.0016
| r=—r=n
myg z Mg zo | 8 _,(’ \, - 5
X 1: ‘ Table 3 Chassis problem design variables
S : - l 5 Lower Upper
2 us }T‘ Variable Bound Bound AAO TC Units
us us
kg Eys k, g By I Cs 125 2500 1530 349 ka/s
| k= kg +k ks 3000 12000 12000 3161 kg/s
1% 1 i1 s sl s cp 25 500 500 500 kg/s
| SIZ 5% oy kp, 18000 36000 18000 18000 kg/s
s1 2 ms 400 500 500 500
| my 100 150 143 143 ki
Ks1 1000 12000 8000 2107 k§/s
ks> 1000 12000 4000 1054 kgls
Fig. 4 Schematic of half-vehicle analysis models
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subject to RY

Ks1=2Ks,
min max ,min max
ksl < k’slS ksl ' ksZ < kszs ksZ

Tables 2 and 3 show the AAO and TC results for targets and
design variables, respectively. As shown in Figure 4, three analy-
sis models are stand-alone codes integrated into a single model for
the AAO solution strategy. Both approaches achieve the target
values for the packaging target. For the NVH targets, the AAO ymin
formulation does not achieve the target while the TC formulation ymax

(10

XX = 3@ ——1 4

target values oR from an upper level
responses computed by analysis models
design targets

objective for the design problem

inequality constraints for the design problem
equality constraints for the design problem
response function

vector of all design variables(y)

local design variables

lower bound ofx

upper bound ok

does. Suspension designs are different, while BIW structure de-

( linking design variables
signs are the same. If one suspects that the problem has more than, L

target values off from a lower level

olneblc;cal mlrrlllma,tLur(tjher Xflll;datlon of the numerical results using yU = target values of from an upper level
global search methods will be necessary. eg = target deviation tolerance for responses

: g, = target devu?\tlon to[erance for. linking variables
Conclusion m;, = number of inequality constraints

|

Target cascading is a generic formulation for large-scale, mul- m,
tidisciplinary system design problems with a multilevel structure.  n
Responses, linking variables, and local variables capture interac- s =
tions between design problems and analysis models. Proper hiersup
archical coordination ensures convergence to the optimal design ss
of the original system target problem. The examples illustrated the
process and indicated that convergence to the global optimum is
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