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Target Cascading in Optimal
System Design
Target cascading is a key challenge in the early product development stages of
complex artifacts: how to propagate the desirable top level design specifications
targets) to appropriate specifications for the various subsystems and components
consistent and efficient manner. Consistency means that all parts of the designed
should work well together, while efficiency means that the process itself should
iterations at later stages, which are costly in time and resources. In the present a
target cascading is formalized by a process modeled as a multilevel optimal design
lem. Design targets are cascaded down to lower levels using partitioning of the orig
problem into a hierarchical set of subproblems. For each design problem at a given l
an optimization problem is formulated to minimize deviations from the propagated ta
and thus achieve intersystem compatibility. A coordination strategy links all subpro
decisions so that the overall system performance targets are met. The process is
trated with an explicit analytical problem and a simple automotive chassis design m
that demonstrates how the process can be applied in practice.@DOI: 10.1115/1.1582501#
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Introduction
Much of the motivation for the work described in this artic

comes from recent efforts in the automotive industry to formal
the product development process and to take full advantag
computer-aided engineering~CAE! tools. A complex product de-
velopment process is most efficient when the various requ
design tasks can be accomplished in a truly ‘‘concurrent’’ mann
In some sense, concurrency means that tasks should be cond
in parallel without isolation from each other, so that decisions
made taking all product requirements into account. Product te
of diverse specialists are formed and communicate regula
Ironically, experience shows that such efforts also have ser
adverse effects because decisions are not made with suffi
speed when trying to satisfy everyone’s viewpoint. In anot
sense, then, concurrency means that each task should be
ducted in isolation or with the least amount of interaction w
other tasks, so that each specialist or team can concentrate on
own specialized task. Yet, clearly, interactions do exist, and t
isolation could lead to costly downstream iterations.

The solution to this dilemma is to identify the key links amo
design tasks, reach the associated trade-off decisions early
then let the individual tasks be conducted separately. The ta
cascading process attempts to achieve just that. Subsequent
actions can take place when the specifications given to each
are difficult or impossible to meet and another round of jo
decisions is necessary. Important specifications for the entire
tem as well as for each system element~subsystems and compo
nents! are first identified, particularly those that will have influ
ence on other parts of the system. Then, specification target va
are assigned at the top level of the system, usually based on
agement criteria. These targets are propagated to the rest o
system, and appropriate values are determined for the expe
performance of each element of the system. Design tasks are
ecuted for each individual element, and interaction with the res
the system is revisited only when a target cannot be met.
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Target cascading in automotive vehicle design can be viewe
a four-step process:~i! specify overall vehicle mission targets,~ii !
propagate vehicle targets to subsystem and component
targets,~iii ! design vehicle systems, subsystems and compon
to achieve their respective sub-targets, and~iv! verify that the
resulting design meets overall vehicle mission targets. This p
cess is possible if appropriate CAE models are available to a
lyze design decisions that can be made through a formal decis
making process. The results, of course, will be as good as
available analysis models, and this is a practical challenge:
models must capture the salient characteristics of the system
teractions without being burdened by cumbersome details. Typ
CAE tools tend to be used for very sophisticated analysis and
expensive to develop and to compute, while ‘‘back-of-th
envelope’’ calculations do not capture the complexity of the int
actions. In our presentation of the target cascading formalism
low, availability of the appropriate models is assumed.

Multilevel optimization methods have been well studied@1–3#.
Collaborative optimization@4–6# is particularly interesting in the
present context. In this formulation design objectives in the s
problems attempt to minimize the discrepancy between interac
variables and should become zero at the optimum. Constrain
the original optimization problem are distributed in the subsyst
optimization problems, and subproblem objectives become eq
ity constraints at the system level. The equality constraints
reformulated in two ways: ‘‘CO1’’ and ‘‘CO2’’ @7#. In CO1 system
level variables are directly matched with their subsystem coun
parts, and in CO2 system level constraints are square sums
deviations. During iterations, subproblems may return differ
values for an interdisciplinary variable, which can cause conv
gence difficulties in that equality constraints at the system le
are not satisfied in the CO1 formulation. In CO2 , the system level
constraints do not satisfy the regularity condition, which is a fo
of constraint qualification@8#. Convergence difficulties are no
uncommon for coordination strategies needed to solve multile
optimization problems.

Though different from collaborative optimization, target ca
cading shares the idea of minimizing deviations between de
problems to achieve consistency but can be shown to satisfy
.
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straint qualifications@9#. In collaborative optimization, analysi
models are decomposed at the same level, and a coordin
problem is defined for a bilevel optimization problem. Without
convergent coordination strategy, it is not clear how to exte
collaborative optimization to a multilevel hierarchy. In target ca
cading, the multilevel hierarchical problem is shown to be equi
lent to a special case of hierarchical overlapping coordina
@10–12# and this allows convergence proofs@9,11#. In the present
study, models are checked for feasibility and boundedness@13#
and for constraint qualifications of the additional deviati
constraints@8,9#.

The next sections present a general description of the s
involved in the target cascading process, followed by the ma
ematical statement of the resulting multilevel hierarchical pr
lem. An analytical example helps fix the mathematical ideas,
an automotive chassis system design problem shows how the
mulation can be used in practice. We will assume that a veh
can be hierarchically decomposed into levels: supersystem,
tems, subsystems, components and so on. For example, in
hicle design, supersystem is the~entire! vehicle; systems are pow
ertrain, chassis, and body; and subsystems are engine, bod
white, suspension, etc. However, the target cascading proce
applicable to any hierarchical decomposition of a system.

Target Cascading Process Description
Target cascading is a system design approach enabling top

design targets to be cascaded down to lower levels of the mo
ing hierarchy. The steps are:~i! development of appropriate analy
sis models,~ii ! partitioning the system,~iii ! formulating the target
problems for each element of the partition, and~iv! solving the
partitioned problem through a coordination strategy to compute
stated targets. In this section we discuss the issues involve
these steps.

Development of Models. Existence of appropriate analytica
or experimental, but quantitative, models for the performance
system elements~systems, subsystems and components! is as-
sumed. If a model is not available, development of a low-fide
model by experiment, simulation, and/or a response sur
method is necessary. Since computationally expensive model
generally not appropriate for target cascading, inexpensive mo
should replace expensive ones through surrogate modeling. G
the analysis models, verification of the individual optimal des
models for all system elements for feasibility and boundednes
necessary~see, e.g., Papalambros and Wilde@13#!. This model
development stage is time-consuming, but without good mod
subsequent design decisions may be of little value.

System Partitioning. In general, system and model partition
ing can be done in several ways: namely, object, aspect~or disci-
pline!, and model-based partitioning@14#. Object and aspect par
titioning are ‘‘natural’’ partitions, and some large compani
employ both partitions simultaneously in matrix organizatio
For example, an automotive manufacturer partitions its organ
tion into powertrain, body, chassis, and electronics divisions
also dedicated groups for durability, packaging, dynamics, sa
or noise-vibration-harshness~NVH!. Model-based partitioning
uses matrix or graph representations derived from the actual m
els to find a properly ‘‘balanced’’ partition@15,16#. After partition-
ing, design variables are categorized into linking variables, co
mon to more than one subproblem, and local variables belon
only to one subproblem.

For target cascading the easiest way is to start with an ob
partition and recognize that each design problem at a given l
is likely to be multidisciplinary. The exact partitioning choice w
also depend on the availability of models, so this task should
done carefully and considered as subject to revisions during
cess implementation.

Target Cascading. After partitioning the original problem
Journal of Mechanical Design
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into subproblems at multiple levels, the linking variables betwe
subproblems at the same level and the response connecting
problems at different levels must be identified. The definition
‘‘response’’ will be elucidated in the next section, but the term
used here to indicate the output of an analysis model~e.g., a
simulation!. At each subproblem element, an optimization pro
lem is formulated. A coordination strategy is required to ens
convergence of the solutions generated by subproblem optim
tions to the original design problem solution.

In a typical hierarchical coordination strategy, there is a mas
problem and one or more subproblems. The master problem
solved for the linking variables that are then input as parame
to the subproblems, and the subproblems are solved for local v
ables that are input as parameters to the master problem.

In target cascading a hierarchical coordination strategy is u
However, unlike the typical hierarchical coordination,linking
variables are transferred to lower level problems as targets af
solving the top-level problem. Furthermore,some of the top-leve
optimization variables are also transferred to the lower level
response targets. In the low-level problem, the objective functio
is to minimize the discrepancy between the target values de
mined at the top level and the linking variables and respon
These ideas will become more clear in the mathematical form
tion of the next section.

Embodiment Design. Once targets are set for the individu
design problems after a successful target cascading proces
interactions among design problems, such as linking variables
responses, are specified. Maintaining these values as fixed pa
eters, the simple models used in the target cascading proces
replaced by more detailed models for embodiment design, wh
will have many more variables and design degrees of freed
Local design problems can be formulated and solved. If curr
design targets cannot be realized using more detailed models~e.g.,
the new problem is infeasible!, the designer must either explor
the local constraints for relaxation or return to the target cascad
process and request adjustments there.

The steps described above are not easy but are system
Forcing design teams to create the correct models and to nego
the selection of targets goes a long way toward a successful
cess. The optimization formalism and attendant numerical s
tions help put any further needed negotiations on a rational ba

Mathematical Formulation
In this section, the mathematical statement of the target cas

ing process is given for a product design example compose
supersystem, system, and subsystem levels, which correspo
top, middle and bottom levels of the modeling hierarchy. Ho
ever, the target cascading formulation is not limited to a thr
level modeling hierarchy, but can be further expanded to m
levels depending on the complexity of the original product des
problem. The general formulation follows at the end of t
section.

Designing With Targets. The original design problem can b
stated as follows: find a design that minimizes the deviations
tween design targets and actual responses while satisfying de
constraints. Alternatively, determine the values of supersyst
system and subsystem design variables that minimize the de
tion of supersystem responses from supersystem targets.
original design problemP0 is formally stated as follows:

P0 : Minimize iT2Ri

x

where R5r ~x!

subject to

gi~x!<0 i 51, . . . ,mi
SEPTEMBER 2003, Vol. 125 Õ 475
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hj~x!50 j 51, . . . ,me

xk
min<xk<xk

max k51, . . . ,n (1)

The objective is defined as the discrepancy between the ta
vector T and the response vectorR obtained from the analysis
modelr (x); g andh are inequality and equality design constrai
vectors, and the design variablex is defined within lower and
upper bounds,xmin andxmax.

In theory, given models for the supersystem, systems and
systems, formulating and solving the above design problem a
single optimization problem is possible using classical optimi
tion techniques. However, this single problem approach is of
impractical and even computationally impossible. An alternat
is to solve the problem in a systematic way utilizing a multilev
formulation, namely, the target cascading process. The target
cading problem can be stated then as follows: given a set of
persystem targets and models for all design elements~namely,
systems, subsystems and components! determine element target
by partitioning the overall design problem, while satisfying fea
bility of element designs and achieving top-level targets.

Modeling Hierarchy. Large-scale design problems usual
possess a multilevel hierarchical structure. Two types of mod
exist in the modeling hierarchy of the target cascading proce
optimal design modelsP andanalysis models r~Fig. 2!. Optimal
design models use analysis models to evaluate supersystem
tem and subsystem responses. Thus, analysis models take d
variables, parameters and lower-level responses as inputs an
turn responses for upper-level design problems as output. A

Fig. 1 Example of hierarchically partitioned optimal design
problem
476 Õ Vol. 125, SEPTEMBER 2003

oaded 16 Nov 2007 to 128.174.192.2. Redistribution subject to ASME li
rget

nt

ub-
s a
a-
ten
ve
el
cas-
su-

i-

ly
els
ss:

sys-
esign
d re-
re-

sponse is an output from an analysis model, and a linking varia
is a common design variable between two or more design p
lems sharing the same parent design problem.

To represent the hierarchy of the partitioned design problem
set of elementsEi is defined at each leveli. For each elementj in
the setEi , the set of childrenCi j is defined, which includes the
elements of the setEi 11 that are children of the element. A
illustrative example is presented in Figure 1: at level of the pa
tioned problem we haveE25$B,C%, and for element ‘‘B’’ at that
level we haveC2B5$D,E%.

Figure 2 shows interactions between analysis models and
sign models at the system level. Targets for system responsesRs1

U

and system linking variablesys1
U are passed down from the supe

system level. After solving the system design problem, target
ues for system responsesRs1

L and system linking variablesys1
L are

passed up to the supersystem level. Likewise, for subsystemss1,
Rss1

U and yss
U are passed down as targets from the system-le

design problem, whereasRss1
L andyss1

L are returned to the system
level. Responses from subsystemss1 Rss1 , responses from sub
systemss2 Rss2 , system local design variablesx̃s1 , and system
linking variablesys are input to the analysis modelr s1 , whereas
system responsesRs1 are returned as output.

Target Cascading at the Top Level „Supersystem Level….
At the top level of the hierarchy the problem is stated as follow
minimize the deviations between top level responses and tar
subject to supersystem design constraints and tolerance
straints that coordinate system responses and system linking
ables. Formally,

Psup: Minimize iRsup2Tsupi1«R1«y

with respect to ~ x̃sup,ys ,Rs ,«R ,«y!

where Rsup5r sup~Rs ,x̃sup!

subject to

(
kPCsup

iRs,k2Rs,k
L i<«R (2)

(
kPCsup

iys,k2ys,k
L i<«y

gsup~Rsup,x̃sup!<0, hsup~Rsup,x̃sup!50

x̃sup
min< x̃sup< x̃sup

max
Fig. 2 Data flows from and into the system-level design problem
Transactions of the ASME

cense or copyright, see http://www.asme.org/terms/Terms_Use.cfm



s

-
t

e

t

t

-

t

s

e

t

les
e

-
el

in
eed

gen-

s
king

em.

ich
ding
tem

ue
tic
lity
les,

Downl
whereCsup5$k1 , . . . ,kcsup
%, csup is the number of child element

of the supersystem-level problem andRs5(Rs,1 , . . . ,Rs,csup
),

Rs5Rs,1ø . . . øRs,csup
and Rs,iùRs, j5B for iÞ j . The objec-

tive that minimizes deviations between design targetsTsup and
supersystem responsesRsup is modified by adding deviation toler
ances«R and «y to coordinate values of the responses from
system,Rs , and the system linking variables,ys . At convergence,
deviation tolerances become zero as the system linking varia
converge to the same values for the different system design p
lems. To account for large target magnitude differences, the
viation terms are multiplied by penalty constants. The pena
constants are selected so that the magnitude of the deviation t
are of the same order. The values of the system responses m
Rs

L , where Rs
L is the target response calculated at the sys

optimal design problem. Finally,gsup and hsup are inequality and
equality design constraints at the supersystem level, subsets o
original constraintsg andh.

Target Cascading at the Middle Level „System Level….
Similarly at the j th system level, the problem is stated as in E
~3!: Minimize the deviations for system responses and sys
linking variables, subject to system design constraints and de
tion constraints that coordinate subsystem responses and
system design linking variables.

Ps, j : Minimize iRs, j2Rs, j
U i1iys, j2ys, j

U i1«R1«y

with respect to x̃s, j ,ys, j ,yss,Rss,«R ,«y

where Rs, j5r s, j~Rss,x̃s, j ,ys, j !

subject to

(
kPCs, j

iRss,k2Rss,k
L i<«R (3)

(
kPCs, j

iyss,k2yss,k
L i<«y

gs, j~Rs, j ,x̃s, j ,ys, j !<0, hs, j~Rs, j ,x̃s, j ,ys, j !50

x̃s, j
min< x̃s, j< x̃s, j

max, ys, j
min<ys, j<ys, j

max

whereCs, j5$k1 , . . . ,kcs, j
%, cs, j being the number of child ele

ment of system-level problem, andRss5(Rss,1 , . . . ,Rss,cs, j
). The

objective function minimizes the discrepancy between sys
level responsesRs, j and the targets set at the upper~supersystem!
level Rs, j

U , as well as between system linking variablesys, j and
the targets set at the supersystem levelys, j

U . Therefore,Rs, j
U and

ys, j
U are determined by solving Eq.~2!. Target deviation tolerance

are minimized to achieve a consistent design with minimum d
crepancies between the subsystem level responsesRss and the
target responsesRss

L from the subsystem design problem, as w
as between the subsystem level linking variablesyss and the target
valuesyss

L from the subsystem design problem. Since the sys
level is located in the middle of the overall hierarchy, this form
lation is the most comprehensive, capturing all interactio
through linking variables, target responses from the lower le
~superscriptL!, and target responses from the upper level~super-
script U!.

Target Cascading at the Bottom Level„Subsystem Level….
The j th subsystem level problem is stated in Eq.~4!: minimize the
deviations for subsystem responses and subsystem-level lin
variables subject to subsystem design constraints. Formally,

Pss, j : Minimize iRss, j2Rss, j
U i1iyss, j2yss, j

U i

with respect to x̃ss, j ,yss, j

where Rss, j5r ss, j~ x̃ss, j ,yss, j !
Journal of Mechanical Design
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subject to (4)

gss, j~Rss, j ,x̃ss, j ,yss, j !<0, hss, j~Rss, j ,x̃ss, j ,yss, j !50

xss, j
min<xss, j<xss, j

max,yss, j
min<yss, j<yss, j

max

At the bottom of the model hierarchy, subsystem design variab
are input to the analysis modelsr ss, j returning responses to th
subsystem level as output. In Eq.~4!, the objective is to minimize
the deviations between the subsystem responsesRss, j and the tar-
gets set at the system levelRss, j

U , as well as between the sub
system linking variablesyss, j and the targets from the system lev
yss, j

U . Target deviation tolerance constraints are not introduced
Eq. ~4! because there are no lower-level design models that n
to be coordinated.

General Formulation of Target Cascading Problem. The
modeling structure presented in Fig. 1 can be extended to a
eral multilevel hierarchical structure. ProblemPi j for the j parti-
tion element at thei level is defined as follows: Minimize the
deviations between current level responsesRi j and linking vari-
ablesyi j and the targetsRi j

U andyi j
U , subject to design constraint

and tolerance constraints that coordinate responses and lin
variables from one level below. Formally,

Pi j : Minimize iRi j 2Ri j
Ui1iyi j 2yi j

Ui1«R1«y

with respect to x̃i j ,yi j ,y~ i 11! j ,R~ i 11! j ,«R ,«y

where Ri j 5r i j ~R~ i 11! j ,x̃i j ,yi j !

subject to (5)

(
kPCi j

iR~ i 11!k2R~ i 11!k
L i<«R

(
kPCi j

iy~ i 11!k2y~ i 11!k
L i<«y

gi j ~Ri j ,x̃i j ,yi j !<0,hi j ~Ri j ,x̃i j ,yi j !50

x̃i j
min< x̃i j < x̃i j

max,yi j
min<yi j <yi j

max.

Here ci j is the number of child element ofi th level problem,
Ci j 5$k1 , . . . ,kci j

%, and R( i 11)5(R( i 11),1 , . . . ,R( i 11),ci j
). This

concludes our discussion of the formal statement of the probl
The next section illustrates these ideas with two examples.

Illustrative Examples
The first example is a geometric programming problem, wh

is general enough to illustrate the key ideas of the target casca
formulation. The second example is an automotive chassis sys
design problem involving two simple quarter-car models.

A Geometric Programming Problem. Geometric program-
ming problems with posynomials are known to have a uniq
globally optimal solution@17#. The example here has a quadra
objective function, 14 design variables, 4 equality and 6 inequa
constraints, and nonnegativity constraints for all design variab
as shown in Eq.~6!. Equality constraintsh1 , . . . ,h4 can be di-
rected as active inequality constraints in negative unity form@13#.

Minimize f 5x1
21x2

2

x3 ,x4 , . . . ,x14

subject to

g1 :
x3

221x4
2

x5
2 <1 g2 :

x5
21x6

22

x7
2 <1 g3 :

x8
21x9

2

x11
2 <1

g4 :
x8

221x10
2

x11
2 <1 g5 :

x11
2 1x12

22

x13
2 <1 g6 :

x11
2 1x12

2

x14
2 <1 (6)
SEPTEMBER 2003, Vol. 125 Õ 477
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h1 :x1
25x3

21x4
221x5

2 h2 :x2
25x5

21x6
21x7

2

h3 :x3
25x8

21x9
221x10

221x11
2 h4 :x6

25x11
2 1x12

2 1x13
2 1x14

2

x3 ,x4 , . . . ,x14>0

If we assume thatx1 , x2 , x3 , x6 are responses from analys
modelsr 1 , r 2 , r 3 , r 4 , the equality constraints can be regarded
analysis models and the overall problem can be stated as in
~7!. This problem can be partitioned as shown in Fig. 3. Sup
system analysis models take supersystem design variablesx4 , x5 ,
x7 and system responsesx3 and x6 and return supersystem re
sponsesx1 , x2 . System analysis models take system design v
ablesx8 , x9 , x10, x11, x12, x13, x14 and return system response
x3 , x6 . The linking variable between system level optimal des
problems isx11. Only the values ofx3 , x6 andx11 are passed up
and down between the supersystem and system optimal de
problems. Top level target values are set to zero. Table 1 sh
optimization results obtained using a single All-At-Once~AAO!
formulation, and a target cascading~TC! formulation. Objective,
variables and tolerance values at the optima are given in the t
The solution using the AAO formulation is the unique global o
timum, whereas the TC solution is the same within a toleran
Note that the value of the objective in TC is smaller than that
the objective in AAO. This is because of the deviation toleran
«1 , «2 , «3 allowed after matching the lower-level responsesx3

L

andx6
L .

Minimize f 5x1
21x2

2

x3 ,x4 , . . . ,x14

where

R15x15r 1~x3 ,x4 ,x5!5~x3
21x4

221x5
2!1/2

R25x25r 2~x5 ,x6 ,x7!5~x5
21x6

21x7
2!1/2

R35x35r 3~x8 ,x9 ,x10,x11!5~x8
21x9

221x10
221x11

2 !1/2

R45x65r 4~x11,x12,x13,x14!5~x11
2 1x12

2 1x13
2 1x14

2 !1/2 (7)

subject to

g1 :
x3

221x4
2

x5
2 <1 g2 :

x5
21x6

22

x7
2 <1 g3 :

x8
21x9

2

x11
2 <1

g4 :
x8

2121x10
2

x11
2 <1 g5 :

x11
2 1x12

22

x13
2 <1 g6 :

x11
2 1x12

2

x14
2 <1

x3 ,x4 , . . . ,x14>0

Table 1 Optimal designs from All-At-Once „AAO … and Target
Cascading „TC… formulations

AAO TC

x1 2.84 2.80
x2 3.09 3.03
x3 2.36 2.35
x4 0.76 0.76
x5 0.87 0.87
x6 2.81 2.79
x7 0.94 0.95
x8 0.97 0.97
x9 0.87 0.87
x10 0.80 0.80
x11 1.30 1.30
x12 0.84 0.84
x13 1.76 1.75
x14 1.55 1.54
f 17.61 17.02

«1 N/A 0.0001
«2 N/A 0.0017
«3 N/A 0.0029
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Chassis Design Problem. Figure 4 shows a schematic dia
gram of a half-vehicle analysis model at the vehicle and sys
levels. The vehicle model is composed of two symmetric quar
car models, which takes system level responses and variable
inputs and returns outputs~such as acceleration of body mass a
relative displacement between sprung and unsprung masse! as
vehicle level responses. Sprung mass is divided into two pa
body-in-whitemb and the rest of the systemms . At the vehicle
level, the body-in-white~BIW! is represented by a single rigi
body mass with stiffnesskb and damping coefficientcb mounted
on a spring with stiffnessks and a damper with coefficientcs at
the front and rear of the vehicle. At the system level, the m
representation is expanded into a finite element beam model
takes eight different section thicknesses as input design varia
and returns the weight as the system level response. For sim
ity, suspension springs in the vehicle model are modeled as
parallel springs at the system level; the model takes two sp
constants as input variables and calculates the suspension s
constant as the system level response. As we move down from
top vehicle level, complexity and completeness of models
increased.

The vehicle-level optimal design problemPv is stated in Eq.
~8!. Design targets are set for NVH and packaging that corresp
to acceleration of the bodyzb9 and the relative displacement o
sprung and unsprung masses, (zs2zus), respectively. The road
profile input isz0 . TargetsT1 and T2 for NVH and packaging,
respectively, are set as in Table 2, and values for upper and lo
bounds for design variables are given in Table 3. The objectiv
to minimize the sum of deviations of the two responses from
targets, with target deviation tolerances«1 and«2 .

Pv : Minimizeizb92T1i1i~zs2zus!2T2i1«11«2

with respect toks ,mb ,cb ,kb ,cb ,ms ,«1 ,«2

where

ms2zs29 1cs2~2zs18 1zs28 !1ks2~2zs11zs2!50

ms1zs19 1cs2~zs18 2zs28 !1ks2~zs12zs2!1cs1~zs18 2zus8 !

1ks1~zs12zus!

50

muszus9 1cs1~zus8 2zs18 !1ks1~zus2zs1!1cus~zus8 2z08!

1kus~zus2z0!

50 (8)

subject to

imb2mb
Li<«1 ,iks2ks

Li<«2 ,cb
min<cb<cb

max

kb
min<kb<kb

max,mb
min<mb<mb

max,cs
min<cs<cs

max

ks
min<ks<ks

max,ms
min<ms<ms

max

The system-level design problem for the BIW is given in Eq.~9!
below. The objective is to minimize the deviation of BIW weig
from the target calculated at the vehicle level. A finite eleme
analysis code takes section thicknesses of all the beams com
ing the BIW structure and returns weight and strain energy
outputs. Constraints on the strain energy per unit volumeJi for
each beam are specified.

Ps1 :Minimizeimb2mb
Ui

with respect to~ t1 , . . . ,tg!

where ~J,mb!5r ~ t1 , . . . ,t8!

subject to (9)

J<Jmax
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be-
nent
mb
min<mb<mb

max

The system-level design problem for the suspension spring
stated in Eq.~10!. The objective is to minimize the deviation o
suspension stiffnessks from the targetks

U calculated at the vehicle

Fig. 4 Schematic of half-vehicle analysis models
echanical Design

007 to 128.174.192.2. Redistribution subject to ASME li
is
f

level. The simple analysis model identifies the relationship
tween the overall suspension stiffness and the two compo
spring constantsks1 andks2 as follows:

Ps2 :Minimizeiks2ks
Ui

with subject to ks1 ,ks2

where ks5ks11ks2

Table 2 Chassis problem targets

Target
Variables

Target
Values AAO TC

NVH ~m/s2! 0.01 0.023 0.01
Packaging~m! 0.002 0.0016 0.0016

Table 3 Chassis problem design variables

Variable
Lower
Bound

Upper
Bound AAO TC Units

cs 125 2500 1530 349 kg/s
ks 3000 12000 12000 3161 kg/s2

cb 25 500 500 500 kg/s
kb 18000 36000 18000 18000 kg/s2

ms 400 500 500 500 kg
mb 100 150 143 143 kg
ks1 1000 12000 8000 2107 kg/s2

ks2 1000 12000 4000 1054 kg/s2
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subject to (10)

ks152ks2

ks1
min<ks1<ks1

max,ks2
min<ks2<ks2

max

Tables 2 and 3 show the AAO and TC results for targets
design variables, respectively. As shown in Figure 4, three an
sis models are stand-alone codes integrated into a single mod
the AAO solution strategy. Both approaches achieve the ta
values for the packaging target. For the NVH targets, the A
formulation does not achieve the target while the TC formulat
does. Suspension designs are different, while BIW structure
signs are the same. If one suspects that the problem has more
one local minima, further validation of the numerical results us
global search methods will be necessary.

Conclusion
Target cascading is a generic formulation for large-scale, m

tidisciplinary system design problems with a multilevel structu
Responses, linking variables, and local variables capture inte
tions between design problems and analysis models. Proper
archical coordination ensures convergence to the optimal de
of the original system target problem. The examples illustrated
process and indicated that convergence to the global optimu
an issue to be kept in mind when evaluating the results. While
worth while to compare convergence characteristics between
get cascading and other MDO approaches, the main focus of
paper is on illustrating the target cascading process and its ab
to converge to an optimal solution. The convergence issue in
get cascading is further discussed in Michelena et al.@11#.

From a design viewpoint, the main benefits of target cascad
are reduction in system design cycle time, avoidance of de
iterations late in the development process, and increased li
hood that physical prototypes will be closer to production qual
Design iterations are reduced by integrating the target propaga
and target matching processes into a single procedure. Using
titioning by systems, subsystems, and components reduces
complexity of the overall design problem and allows more s
tematic concurrent design of the system’s elements. Thus ta
cascading is more beneficial when applied to large-scale mult
ciplinary design problems, where the modeling hierarchy is co
posed of subproblems of smaller size compared to the orig
problem.
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Nomenclature

J 5 strain energy per unit volume
Po 5 original design problem
Ps 5 system-level target cascading optimization problem

Psup 5 supersystem-level target cascading optimization pro
lem

Pss 5 subsystem-level target cascading optimization prob
lem

RL 5 target values ofR from a lower level
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RU 5 target values ofR from an upper level
R 5 responses computed by analysis models
T 5 design targets
f 5 objective for the design problem
g 5 inequality constraints for the design problem
h 5 equality constraints for the design problem
r 5 response function
x 5 vector of all design variables (x̃,y)
x̃ 5 local design variables

xmin 5 lower bound ofx
xmax 5 upper bound ofx

y 5 linking design variables
yL 5 target values ofy from a lower level
yU 5 target values ofy from an upper level
«R 5 target deviation tolerance for responses
«y 5 target deviation tolerance for linking variables
mi 5 number of inequality constraints
me 5 number of equality constraints

n 5 number of design variables
s 5 system level

sup 5 supersystem level
ss 5 subsystem level
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